scholarly journals Causal Graphical Models with Latent Variables: Learning and Inference

Author(s):  
Stijn Meganck ◽  
Philippe Leray ◽  
Bernard Manderick
2017 ◽  
Vol 29 (8) ◽  
pp. 2177-2202 ◽  
Author(s):  
Jacquelyn A. Shelton ◽  
Jan Gasthaus ◽  
Zhenwen Dai ◽  
Jörg Lücke ◽  
Arthur Gretton

We propose a nonparametric procedure to achieve fast inference in generative graphical models when the number of latent states is very large. The approach is based on iterative latent variable preselection, where we alternate between learning a selection function to reveal the relevant latent variables and using this to obtain a compact approximation of the posterior distribution for EM. This can make inference possible where the number of possible latent states is, for example, exponential in the number of latent variables, whereas an exact approach would be computationally infeasible. We learn the selection function entirely from the observed data and current expectation-maximization state via gaussian process regression. This is in contrast to earlier approaches, where selection functions were manually designed for each problem setting. We show that our approach performs as well as these bespoke selection functions on a wide variety of inference problems. In particular, for the challenging case of a hierarchical model for object localization with occlusion, we achieve results that match a customized state-of-the-art selection method at a far lower computational cost.


2013 ◽  
Vol 41 (2) ◽  
pp. 401-435 ◽  
Author(s):  
Animashree Anandkumar ◽  
Ragupathyraj Valluvan

2005 ◽  
Vol 360 (1457) ◽  
pp. 953-967 ◽  
Author(s):  
Michael Eichler

The identification of effective connectivity from time-series data such as electroencephalogram (EEG) or time-resolved function magnetic resonance imaging (fMRI) recordings is an important problem in brain imaging. One commonly used approach to inference effective connectivity is based on vector autoregressive models and the concept of Granger causality. However, this probabilistic concept of causality can lead to spurious causalities in the presence of latent variables. Recently, graphical models have been used to discuss problems of causal inference for multivariate data. In this paper, we extend these concepts to the case of time-series and present a graphical approach for discussing Granger-causal relationships among multiple time-series. In particular, we propose a new graphical representation that allows the characterization of spurious causality and, thus, can be used to investigate spurious causality. The method is demonstrated with concurrent EEG and fMRI recordings which are used to investigate the interrelations between the alpha rhythm in the EEG and blood oxygenation level dependent (BOLD) responses in the fMRI. The results confirm previous findings on the location of the source of the EEG alpha rhythm.


Author(s):  
Frank Nussbaum ◽  
Joachim Giesen

Measurement is at the core of scientific discovery. However, some quantities, such as economic behavior or intelligence, do not allow for direct measurement. They represent latent constructs that require surrogate measurements. In other scenarios, non-observed quantities can influence the variables of interest. In either case, models with latent variables are needed. Here, we investigate fused latent and graphical models that exhibit continuous latent variables and discrete observed variables. These models are characterized by a decomposition of the pairwise interaction parameter matrix into a group-sparse component of direct interactions and a low-rank component of indirect interactions due to the latent variables. We first investigate when such a decomposition is identifiable. Then, we show that fused latent and graphical models can be recovered consistently from data in the high-dimensional setting. We support our theoretical findings with experiments on synthetic and real-world data from polytomous item response theory studies.


2013 ◽  
Vol 47 ◽  
pp. 157-203 ◽  
Author(s):  
R. Mourad ◽  
C. Sinoquet ◽  
N. L. Zhang ◽  
T. Liu ◽  
P. Leray

In data analysis, latent variables play a central role because they help provide powerful insights into a wide variety of phenomena, ranging from biological to human sciences. The latent tree model, a particular type of probabilistic graphical models, deserves attention. Its simple structure - a tree - allows simple and efficient inference, while its latent variables capture complex relationships. In the past decade, the latent tree model has been subject to significant theoretical and methodological developments. In this review, we propose a comprehensive study of this model. First we summarize key ideas underlying the model. Second we explain how it can be efficiently learned from data. Third we illustrate its use within three types of applications: latent structure discovery, multidimensional clustering, and probabilistic inference. Finally, we conclude and give promising directions for future researches in this field.


2019 ◽  
Author(s):  
Sacha Epskamp

Researchers in the field of network psychometrics often focus on the estimation of Gaussian graphical models (GGM)---an undirected network model of partial correlations---between observed variables of cross-sectional data or single subject time-series data. This assumes that all variables are measured without measurement error, which may be implausible. In addition, cross-sectional data cannot distinguish between within-subject and between-subject effects. This paper provides a general framework that extends GGM modeling with latent variables, including relationships over time. These relationships can be estimated from time-series data or panel data featuring at least three waves of measurement. The model takes the form of a graphical vector-autoregression model between latent variables and is termed the ts-lvgvar when estimated from time-series data and the panel-lvgvar when estimated from panel data. These methods have been implemented in the software package psychonetrics, which is exemplified in two empirical examples, one using time-series data and one using panel data, and evaluated in two large-scale simulation studies. The paper concludes with a discussion on ergodicity and generalizability. Although within-subject effects may in principle be separated from between-subject effects, the interpretation of these results rest on the intensity and the time interval of measurement and on the plausibility of the assumption of stationarity.


2015 ◽  
Vol 27 (3) ◽  
pp. 748-770 ◽  
Author(s):  
Yongseok Yoo ◽  
Sriram Vishwanath

Graphical models and related algorithmic tools such as belief propagation have proven to be useful tools in (approximately) solving combinatorial optimization problems across many application domains. A particularly combinatorially challenging problem is that of determining solutions to a set of simultaneous congruences. Specifically, a continuous source is encoded into multiple residues with respect to distinct moduli, and the goal is to recover the source efficiently from noisy measurements of these residues. This problem is of interest in multiple disciplines, including neural codes, decentralized compression in sensor networks, and distributed consensus in information and social networks. This letter reformulates the recovery problem as an optimization over binary latent variables. Then we present a belief propagation algorithm, a layered variant of affinity propagation, to solve the problem. The underlying encoding structure of multiple congruences naturally results in a layered graphical model for the problem, over which the algorithms are deployed, resulting in a layered affinity propagation (LAP) solution. First, the convergence of LAP to an approximation of the maximum likelihood (ML) estimate is shown. Second, numerical simulations show that LAP converges within a few iterations and that the mean square error of LAP approaches that of the ML estimation at high signal-to-noise ratios.


Author(s):  
Philippe Leray ◽  
Stijn Meganek ◽  
Sam Maes ◽  
Bernard Manderick

Sign in / Sign up

Export Citation Format

Share Document