Use of Sunshine Number for Solar Irradiance Time Series Generation

Author(s):  
Viorel Badescu
Keyword(s):  
2010 ◽  
Vol 6 (S273) ◽  
pp. 89-95 ◽  
Author(s):  
A. F. Lanza

AbstractThe photospheric spot activity of some of the stars with transiting planets discovered by the CoRoT space experiment is reviewed. Their out-of-transit light modulations are fitted by a spot model previously tested with the total solar irradiance variations. This approach allows us to study the longitude distribution of the spotted area and its variations versus time during the five months of a typical CoRoT time series. The migration of the spots in longitude provides a lower limit for the surface differential rotation, while the variation of the total spotted area can be used to search for short-term cycles akin the solar Rieger cycles. The possible impact of a close-in giant planet on stellar activity is also discussed.


2021 ◽  
Author(s):  
Jean-Philippe Montillet ◽  
Wolfgang Finsterle ◽  
Werner Schmutz ◽  
Margit Haberreiter ◽  
Rok Sikonja

<p><span>Since the late 70’s, successive satellite missions have been monitoring the sun’s activity, recording total solar irradiance observations. These measurements are important to estimate the Earth’s energy imbalance, </span><span>i.e. the difference of energy absorbed and emitted by our planet. Climate modelers need the solar forcing time series in their models in order to study the influence of the Sun on the Earth’s climate. With this amount of TSI data, solar irradiance reconstruction models  can be better validated which can also improve studies looking at past climate reconstructions (e.g., Maunder minimum). V</span><span>arious algorithms have been proposed in the last decade to merge the various TSI measurements over the 40 years of recording period. We have developed a new statistical algorithm based on data fusion.  The stochastic noise processes of the measurements are modeled via a dual kernel including white and coloured noise.  We show our first results and compare it with previous releases (PMOD,ACRIM, ... ). </span></p>


2014 ◽  
Vol 36 ◽  
pp. 623-628 ◽  
Author(s):  
A. Alzahrani ◽  
J.W. Kimball ◽  
C. Dagli

2021 ◽  
Author(s):  
Jean-Philippe Montillet ◽  
Wolfgang Finsterle ◽  
Gael Kermarrec ◽  
Rok Sikonja ◽  
Margit Haberreiter ◽  
...  

MAUSAM ◽  
2021 ◽  
Vol 52 (1) ◽  
pp. 67-82
Author(s):  
J. R. KULKARNI ◽  
M. MUJUMDAR ◽  
S. P. GHARGE ◽  
V. SATYAN ◽  
G. B. PANT

Earlier investigations into the epochal behavior of fluctuations in All India Summer Monsoon Rainfall (AISMR) have indicated the existence of a Low Frequency Mode (LFM) in the 60-70 years range. One of the probable sources of this variability may be due to changes in solar irradiance. To investigate this, time series of 128-year solar irradiance data from 1871-1998 has been examined. The Wavelet Transform (WT) method is applied to extract the LFM from these time series, which show a very good correspondence. A case study has been carried out to test the sensitivity of AISMR to solar irradiance. The General Circulation Model (GCM) of the Center of Ocean-Land-Atmosphere (COLA) has been integrated in the control run (using the climatological value of solar constant i.e., 1365 Wm-2) and in the enhanced solar constant condition (enhanced by 10 Wm-2) for summer monsoon season of 1986. The study shows that the large scale atmospheric circulation over the Indian region, in the enhanced solar constant scenario is favorable to good monsoon activity. A conceptual model for the impact of solar irradiance on the AISMR at LFM is also suggested.


2020 ◽  
Vol 117 ◽  
pp. 109478 ◽  
Author(s):  
Germán Salazar ◽  
Christian Gueymard ◽  
Janis Bezerra Galdino ◽  
Olga de Castro Vilela ◽  
Naum Fraidenraich

2019 ◽  
Vol 109 ◽  
pp. 412-427 ◽  
Author(s):  
Christian A. Gueymard ◽  
Jamie M. Bright ◽  
David Lingfors ◽  
Aron Habte ◽  
Manajit Sengupta

Sign in / Sign up

Export Citation Format

Share Document