scholarly journals Predicting Solar Irradiance Using Time Series Neural Networks

2014 ◽  
Vol 36 ◽  
pp. 623-628 ◽  
Author(s):  
A. Alzahrani ◽  
J.W. Kimball ◽  
C. Dagli
2014 ◽  
Vol 700 ◽  
pp. 7-11
Author(s):  
Mauricio Mauledoux ◽  
Oscar I. Caldas ◽  
Edilberto Mejía-Ruda

This paper describes the study and analysis of different techniques for online solar irradiance prediction algorithms to properly estimate over the 24 hours of the next day in the “Universidad Militar Nueva Granada” (UMNG) campus at Cajicá, Colombia, in order to use predictions for a model predicted control of a DC-micro grid. These models were designed and tested using MATLAB® software. The performance of models were evaluated and compared among them to determine the best forecasting approach for Cajicá. The absence of seasons and the noisy solar irradiance time series caused by cloudy covering as perturbation are the main particularity of the Cajicá’s climate behavior. A meteorological database from 2010 to 2014 was used to estimate or train the model of prediction ARMAX and NNF, NAR, NARX as Artificial Neural Networks (ANNs), which were compared with error criteria such as square and absolute error criteria.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3987
Author(s):  
Giorgio Guariso ◽  
Giuseppe Nunnari ◽  
Matteo Sangiorgio

The problem of forecasting hourly solar irradiance over a multi-step horizon is dealt with by using three kinds of predictor structures. Two approaches are introduced: Multi-Model (MM) and Multi-Output (MO). Model parameters are identified for two kinds of neural networks, namely the traditional feed-forward (FF) and a class of recurrent networks, those with long short-term memory (LSTM) hidden neurons, which is relatively new for solar radiation forecasting. The performances of the considered approaches are rigorously assessed by appropriate indices and compared with standard benchmarks: the clear sky irradiance and two persistent predictors. Experimental results on a relatively long time series of global solar irradiance show that all the networks architectures perform in a similar way, guaranteeing a slower decrease of forecasting ability on horizons up to several hours, in comparison to the benchmark predictors. The domain adaptation of the neural predictors is investigated evaluating their accuracy on other irradiance time series, with different geographical conditions. The performances of FF and LSTM models are still good and similar between them, suggesting the possibility of adopting a unique predictor at the regional level. Some conceptual and computational differences between the network architectures are also discussed.


Author(s):  
Muhammad Faheem Mushtaq ◽  
Urooj Akram ◽  
Muhammad Aamir ◽  
Haseeb Ali ◽  
Muhammad Zulqarnain

It is important to predict a time series because many problems that are related to prediction such as health prediction problem, climate change prediction problem and weather prediction problem include a time component. To solve the time series prediction problem various techniques have been developed over many years to enhance the accuracy of forecasting. This paper presents a review of the prediction of physical time series applications using the neural network models. Neural Networks (NN) have appeared as an effective tool for forecasting of time series.  Moreover, to resolve the problems related to time series data, there is a need of network with single layer trainable weights that is Higher Order Neural Network (HONN) which can perform nonlinearity mapping of input-output. So, the developers are focusing on HONN that has been recently considered to develop the input representation spaces broadly. The HONN model has the ability of functional mapping which determined through some time series problems and it shows the more benefits as compared to conventional Artificial Neural Networks (ANN). The goal of this research is to present the reader awareness about HONN for physical time series prediction, to highlight some benefits and challenges using HONN.


2016 ◽  
Vol 9 (1) ◽  
pp. 53-62 ◽  
Author(s):  
R. D. García ◽  
O. E. García ◽  
E. Cuevas ◽  
V. E. Cachorro ◽  
A. Barreto ◽  
...  

Abstract. This paper presents the reconstruction of a 73-year time series of the aerosol optical depth (AOD) at 500 nm at the subtropical high-mountain Izaña Atmospheric Observatory (IZO) located in Tenerife (Canary Islands, Spain). For this purpose, we have combined AOD estimates from artificial neural networks (ANNs) from 1941 to 2001 and AOD measurements directly obtained with a Precision Filter Radiometer (PFR) between 2003 and 2013. The analysis is limited to summer months (July–August–September), when the largest aerosol load is observed at IZO (Saharan mineral dust particles). The ANN AOD time series has been comprehensively validated against coincident AOD measurements performed with a solar spectrometer Mark-I (1984–2009) and AERONET (AErosol RObotic NETwork) CIMEL photometers (2004–2009) at IZO, obtaining a rather good agreement on a daily basis: Pearson coefficient, R, of 0.97 between AERONET and ANN AOD, and 0.93 between Mark-I and ANN AOD estimates. In addition, we have analysed the long-term consistency between ANN AOD time series and long-term meteorological records identifying Saharan mineral dust events at IZO (synoptical observations and local wind records). Both analyses provide consistent results, with correlations  >  85 %. Therefore, we can conclude that the reconstructed AOD time series captures well the AOD variations and dust-laden Saharan air mass outbreaks on short-term and long-term timescales and, thus, it is suitable to be used in climate analysis.


2021 ◽  
Vol 441 ◽  
pp. 161-178
Author(s):  
Philip B. Weerakody ◽  
Kok Wai Wong ◽  
Guanjin Wang ◽  
Wendell Ela

Sign in / Sign up

Export Citation Format

Share Document