C1 Thermal Design of Heat Exchangers

2010 ◽  
pp. 31-66
Author(s):  
Wilfried Roetzel ◽  
Bernhard Spang
2002 ◽  
Vol 22 (14) ◽  
pp. 1643-1660 ◽  
Author(s):  
M. Picón-Núñez ◽  
G.T. Polley ◽  
M. Medina-Flores

Author(s):  
Xinyi Li ◽  
Ting Ma ◽  
Qiuwang Wang

It is a recognized hard task for the traditional thermal design of compact heat exchangers to obtain the optimal geometric parameters efficiently and effectively, owing to its complex trial-and-error process. In response to this issue, a simplified conjugate-gradient method (SCGM) combined with a sequential unconstrained minimization technique (SUMT) as a favorable optimization technique is incorporated with the traditional thermal design in this study, and then the key geometric parameters of fin-and-tube heat exchangers (FTHEs) are investigated and optimized successfully. In this method, the minimum total weight of FTHEs as the final objective is discussed, involving two geometric parameters, diameter of tube and height of shape as search variables. Aiming to minimize the objective function, SCGM is introduced to the SUMT to update the search variables continually with the fixed search steps and the search directions. Meanwhile, with the known geometric parameters from the SUMT, the log-mean temperature difference method (LMTD) is applied to determine the heat transfer area under the combined structure sizes for a given heat duty. Additionally, optimization results for three different heat duty is discussed in this work. The results show that it is effective to obtain the optimal sets of geometric parameters of FTHEs by the present method, and there are some guidance values for the thermal designs of compact heat exchangers.


2019 ◽  
pp. 33-98
Author(s):  
Vivek K. Patel ◽  
Vimal J. Savsani ◽  
Mohamed A. Tawhid

Author(s):  
Piyush Sabharwall ◽  
Denis E. Clark ◽  
Ronald E. Mizia ◽  
Michael V. Glazoff ◽  
Michael G. McKellar

The goal of next generation reactors is to increase energy efficiency in the production of electricity and provide high-temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process. The need for efficiency, compactness, and safety challenge the boundaries of existing heat exchanger technology. Various studies have been performed in attempts to update the secondary heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more efficient industrial processes. Modern compact heat exchangers can provide high compactness, a measure of the ratio of surface area-to-volume of a heat exchange. The microchannel heat exchanger studied here is a plate-type, robust heat exchanger that combines compactness, low pressure drop, high effectiveness, and the ability to operate with a very large pressure differential between hot and cold sides. The plates are etched and thereafter joined by diffusion welding, resulting in extremely strong all-metal heat exchanger cores. After bonding, any number of core blocks can be welded together to provide the required flow capacity. This study explores the microchannel heat exchanger and draws conclusions about diffusion welding/bonding for joining heat exchanger plates, with both experimental and computational modeling, along with existing challenges and gaps. Also, presented is a thermal design method for determining overall design specifications for a microchannel printed circuit heat exchanger for both supercritical (24 MPa) and subcritical (17 MPa) Rankine power cycles.


Author(s):  
M A Mehrabian

Much of design data for plate heat exchangers remain proprietary. A step by step methodology for determination of the exchanger size and internal geometry from the knowledge of process data is scarce. Commercial computer codes do not give the user accessibility to mathematical modelling. Engineers do not usually understand the terminology and geometry of these exchangers. This article presents a manual method for thermal design of plate heat exchangers based on physically meaningful estimations, calculations, and comparisons. When there is no close agreement, it may be necessary to change one or more of the design parameters, i.e. channel (passage) velocities, wall temperatures, or corrugation inclination angle. Considerable skill and judgment is required by the thermal design engineer at this stage to decide how the tentative design should be changed to provide a rapid solution. The experienced design engineer is often able to judge on the final decision from the first or second trial designs.


Micromachines ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 721
Author(s):  
Haiwang Li ◽  
Yujia Li ◽  
Binghuan Huang ◽  
Tiantong Xu

Due to the large surface-area-to-volume ratio, microchannel heat exchangers have a higher heat transfer rate compared with traditional scale heat exchangers. In this study, the optimum microchannel cavity with high heat transfer and low flow resistance is designed to further improve microchannel exchangers’ thermal performance. A three-dimensional laminar flow model, consisting of Navier–Stokes equations and an energy conservation equation is solved and the conjugate heat transfer between the silicon basement and deionized water is taken into consideration. The impact of the shape, aspect ratio, size and spacing of the cavity on the thermal performance of microchannel exchangers are numerically investigated, respectively. The results indicated that the cavity on the sidewall can enhance heat transfer and reduce flow resistance simultaneously, and cavities with a relatively small expansion angle and streamlined edge could enhance thermal performance the most. Based on the conclusions, a new cavity shape is proposed, and the simulation results verify its excellent thermal performance as expected. Furthermore, investigation is performed to figure out the optimum design of the new cavity and the optimal geometric parameters of the cavity under different flow conditions have been obtained in principle for microchannel exchangers’ design.


Sign in / Sign up

Export Citation Format

Share Document