Ernst Zermelo - Collected Works/Gesammelte Werke

Author(s):  
Ernst Zermelo
Keyword(s):  
2003 ◽  
Vol 9 (3) ◽  
pp. 273-298 ◽  
Author(s):  
Akihiro Kanamori

For the modern set theorist the empty set Ø, the singleton {a}, and the ordered pair 〈x, y〉 are at the beginning of the systematic, axiomatic development of set theory, both as a field of mathematics and as a unifying framework for ongoing mathematics. These notions are the simplest building locks in the abstract, generative conception of sets advanced by the initial axiomatization of Ernst Zermelo [1908a] and are quickly assimilated long before the complexities of Power Set, Replacement, and Choice are broached in the formal elaboration of the ‘set of’f {} operation. So it is surprising that, while these notions are unproblematic today, they were once sources of considerable concern and confusion among leading pioneers of mathematical logic like Frege, Russell, Dedekind, and Peano. In the development of modern mathematical logic out of the turbulence of 19th century logic, the emergence of the empty set, the singleton, and the ordered pair as clear and elementary set-theoretic concepts serves as amotif that reflects and illuminates larger and more significant developments in mathematical logic: the shift from the intensional to the extensional viewpoint, the development of type distinctions, the logical vs. the iterative conception of set, and the emergence of various concepts and principles as distinctively set-theoretic rather than purely logical. Here there is a loose analogy with Tarski's recursive definition of truth for formal languages: The mathematical interest lies mainly in the procedure of recursion and the attendant formal semantics in model theory, whereas the philosophical interest lies mainly in the basis of the recursion, truth and meaning at the level of basic predication. Circling back to the beginning, we shall see how central the empty set, the singleton, and the ordered pair were, after all.


Author(s):  
John P. Burgess

In the late nineteenth century, Georg Cantor created mathematical theories, first of sets or aggregates of real numbers (or linear points), and later of sets or aggregates of arbitrary elements. The relationship of element a to set A is written a∈A; it is to be distinguished from the relationship of subset B to set A, which holds if every element of B is also an element of A, and which is written B⊆A. Cantor is most famous for his theory of transfinite cardinals, or numbers of elements in infinite sets. A subset of an infinite set may have the same number of elements as the set itself, and Cantor proved that the sets of natural and rational numbers have the same number of elements, which he called ℵ0; also that the sets of real and complex numbers have the same number of elements, which he called c. Cantor proved ℵ0 to be less than c. He conjectured that no set has a number of elements strictly between these two. In the early twentieth century, in response to criticism of set theory, Ernst Zermelo undertook its axiomatization; and, with amendments by Abraham Fraenkel, his have been the accepted axioms ever since. These axioms help distinguish the notion of a set, which is too basic to admit of informative definition, from other notions of a one made up of many that have been considered in logic and philosophy. Properties having exactly the same particulars as instances need not be identical, whereas sets having exactly the same elements are identical by the axiom of extensionality. Hence for any condition Φ there is at most one set {x|Φ(x)} whose elements are all and only those x such that Φ(x) holds, and {x|Φ(x)}={x|Ψ(x)} if and only if conditions Φ and Ψ hold of exactly the same x. It cannot consistently be assumed that {x|Φ(x)} exists for every condition Φ. Inversely, the existence of a set is not assumed to depend on the possibility of defining it by some condition Φ as {x|Φ(x)}. One set x0 may be an element of another set x1 which is an element of x2 and so on, x0∈x1∈x2∈…, but the reverse situation, …∈y2∈y1∈y0, may not occur, by the axiom of foundation. It follows that no set is an element of itself and that there can be no universal set y={x|x=x}. Whereas a part of a part of a whole is a part of that whole, an element of an element of a set need not be an element of that set. Modern mathematics has been greatly influenced by set theory, and philosophies rejecting the latter must therefore reject much of the former. Many set-theoretic notations and terminologies are encountered even outside mathematics, as in parts of philosophy: pair {a,b} {x|x=a or x=b} singleton {a} {x|x=a} empty set ∅ {x|x≠x} union ∪X {a|a∈A for some A∈X} binary union A∪B {a|a∈A or a∈B} intersection ∩X {a|a∈A for all A∈X} binary intersection A∩B {a|a∈A and a∈B} difference A−B {a|a∈A and not a∈B} complement A−B power set ℘(A) {B|B⊆A} (In contexts where only subsets of A are being considered, A-B may be written -B and called the complement of B.) While the accepted axioms suffice as a basis for the development not only of set theory itself, but of modern mathematics generally, they leave some questions about transfinite cardinals unanswered. The status of such questions remains a topic of logical research and philosophical controversy.


Gottlob Frege. Die Grundlagen der Arithmetik. Eine logisch mathematische Untersuchung über den Begriff der Zahl. Centenary edition of 495. With supplementary text critically edited by Christian Thiel. Felix Meiner Verlag, Hamburg1986, LXIII + 187 pp. - Christian Thiel. Einleitung des Herausgebers. Therein, pp. XXI–LXIII. - Ernst Reinhold Eduard Hoppe. Review of Frege's Die Grundlagen der Arithmetik (495). Therein, pp. 109–117. (Reprinted from Archiv der Mathematik und Physik, ser. 2 part 2 (1885), Litterarischer Bericht VII, pp. 28–35.) - Georg Cantor. Review of the same. A reprint of 651. Therein, pp. 117–119. - Ernst Zermelo. Anmerkung. A reprint of 1257. Therein, p. 119. - Gottlob Frege. Erwiderung. Therein, p. 120. (Reprinted from Deutsche Litteraturzeitung, vol. 6 (1885), col. 1030.) - Anonymous. Review of the same. Therein, pp. 120–121. (Reprinted from Literarisches Centralblatt für Deutschland, vol. 36 (1885), cols. 1514–1515.) - Rudolf Eucken. Review of the same. Therein, pp. 122–123. (Reprinted from Philosophische Monatshefte, vol. 22 (1886), pp. 421–422.) - Kurd Laßwitz. Review of the same. Therein, pp. 123–128. (Reprinted from Zeitschrift für Philosophic und philosophische Kritik, n.s., supplement to vol. 89 (1886), pp. 143–148.) - Ernst Schröder. Stellungnahme. A reprint of p. 704 of 427. Therein, pp. 128–129. - Edmund Husserl. Frege's Versuch. A reprint of VIII 59. Therein, pp. 129–134. - Heinrich Scholz. Review of the same. A reprint of 35319. Therein, pp. 134–142.

1988 ◽  
Vol 53 (3) ◽  
pp. 993-999
Author(s):  
Matthias Schirn

1999 ◽  
Vol 5 (3) ◽  
pp. 289-302 ◽  
Author(s):  
Gabriel Uzquiano

In [12], Ernst Zermelo described a succession of models for the axioms of set theory as initial segments of a cumulative hierarchy of levels UαVα. The recursive definition of the Vα's is:Thus, a little reflection on the axioms of Zermelo-Fraenkel set theory (ZF) shows that Vω, the first transfinite level of the hierarchy, is a model of all the axioms of ZF with the exception of the axiom of infinity. And, in general, one finds that if κ is a strongly inaccessible ordinal, then Vκ is a model of all of the axioms of ZF. (For all these models, we take ∈ to be the standard element-set relation restricted to the members of the domain.) Doubtless, when cast as a first-order theory, ZF does not characterize the structures 〈Vκ,∈∩(Vκ×Vκ)〉 for κ a strongly inaccessible ordinal, by the Löwenheim-Skolem theorem. Still, one of the main achievements of [12] consisted in establishing that a characterization of these models can be attained when one ventures into second-order logic. For let second-order ZF be, as usual, the theory that results from ZF when the axiom schema of replacement is replaced by its second-order universal closure. Then, it is a remarkable result due to Zermelo that second-order ZF can only be satisfied in models of the form 〈Vκ,∈∩(Vκ×Vκ)〉 for κ a strongly inaccessible ordinal.


Sign in / Sign up

Export Citation Format

Share Document