Greedy Local Search and Vertex Cover in Sparse Random Graphs

Author(s):  
Carsten Witt
2017 ◽  
Vol 59 ◽  
pp. 463-494 ◽  
Author(s):  
Shaowei Cai ◽  
Jinkun Lin ◽  
Chuan Luo

The problem of finding a minimum vertex cover (MinVC) in a graph is a well known NP-hard combinatorial optimization problem of great importance in theory and practice. Due to its NP-hardness, there has been much interest in developing heuristic algorithms for finding a small vertex cover in reasonable time. Previously, heuristic algorithms for MinVC have focused on solving graphs of relatively small size, and they are not suitable for solving massive graphs as they usually have high-complexity heuristics. This paper explores techniques for solving MinVC in very large scale real-world graphs, including a construction algorithm, a local search algorithm and a preprocessing algorithm. Both the construction and search algorithms are based on low-complexity heuristics, and we combine them to develop a heuristic algorithm for MinVC called FastVC. Experimental results on a broad range of real-world massive graphs show that, our algorithms are very fast and have better performance than previous heuristic algorithms for MinVC. We also develop a preprocessing algorithm to simplify graphs for MinVC algorithms. By applying the preprocessing algorithm to local search algorithms, we obtain two efficient MinVC solvers called NuMVC2+p and FastVC2+p, which show further improvement on the massive graphs.


2013 ◽  
Vol 46 ◽  
pp. 687-716 ◽  
Author(s):  
S. Cai ◽  
K. Su ◽  
C. Luo ◽  
A. Sattar

The Minimum Vertex Cover (MVC) problem is a prominent NP-hard combinatorial optimization problem of great importance in both theory and application. Local search has proved successful for this problem. However, there are two main drawbacks in state-of-the-art MVC local search algorithms. First, they select a pair of vertices to exchange simultaneously, which is time-consuming. Secondly, although using edge weighting techniques to diversify the search, these algorithms lack mechanisms for decreasing the weights. To address these issues, we propose two new strategies: two-stage exchange and edge weighting with forgetting. The two-stage exchange strategy selects two vertices to exchange separately and performs the exchange in two stages. The strategy of edge weighting with forgetting not only increases weights of uncovered edges, but also decreases some weights for each edge periodically. These two strategies are used in designing a new MVC local search algorithm, which is referred to as NuMVC. We conduct extensive experimental studies on the standard benchmarks, namely DIMACS and BHOSLIB. The experiment comparing NuMVC with state-of-the-art heuristic algorithms show that NuMVC is at least competitive with the nearest competitor namely PLS on the DIMACS benchmark, and clearly dominates all competitors on the BHOSLIB benchmark. Also, experimental results indicate that NuMVC finds an optimal solution much faster than the current best exact algorithm for Maximum Clique on random instances as well as some structured ones. Moreover, we study the effectiveness of the two strategies and the run-time behaviour through experimental analysis.


Author(s):  
Shaowei Cai ◽  
Wenying Hou ◽  
Jinkun Lin ◽  
Yuanjie Li

The minimum weight vertex cover (MWVC) problem is an important combinatorial optimization problem with various real-world applications. Due to its NP hardness, most works on solving MWVC focus on heuristic algorithms that can return a good quality solution in reasonable time. In this work, we propose two dynamic strategies that adjust the behavior of the algorithm during search, which are used to improve a state of the art local search for MWVC named FastWVC, resulting in two local search algorithms called DynWVC1 and DynWVC2. Previous MWVC algorithms are evaluated on graphs with random or hand crafted weights. In this work, we evaluate the algorithms on the vertex weighted graphs that obtained from an important real world problem, the map labeling problem. Experiments show that our algorithm obtains better results than previous algorithms for MWVC and maximum weight independent set (MWIS) on these real world instances. We also test our algorithms on massive graphs studied in previous works, and show significant improvements there.


Sign in / Sign up

Export Citation Format

Share Document