Numerical Method for Bounds Computations of Discrete-Time Markov Chains with Different State Spaces

Author(s):  
Mourad Ahmane ◽  
Laurent Truffet
Author(s):  
Yuri Suhov ◽  
Mark Kelbert
Keyword(s):  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nikolaos Halidias

Abstract In this note we study the probability and the mean time for absorption for discrete time Markov chains. In particular, we are interested in estimating the mean time for absorption when absorption is not certain and connect it with some other known results. Computing a suitable probability generating function, we are able to estimate the mean time for absorption when absorption is not certain giving some applications concerning the random walk. Furthermore, we investigate the probability for a Markov chain to reach a set A before reach B generalizing this result for a sequence of sets A 1 , A 2 , … , A k {A_{1},A_{2},\dots,A_{k}} .


1967 ◽  
Vol 4 (1) ◽  
pp. 192-196 ◽  
Author(s):  
J. N. Darroch ◽  
E. Seneta

In a recent paper, the authors have discussed the concept of quasi-stationary distributions for absorbing Markov chains having a finite state space, with the further restriction of discrete time. The purpose of the present note is to summarize the analogous results when the time parameter is continuous.


2007 ◽  
Vol 39 (02) ◽  
pp. 360-384 ◽  
Author(s):  
Uğur Tuncay Alparslan ◽  
Gennady Samorodnitsky

We study the ruin probability where the claim sizes are modeled by a stationary ergodic symmetric α-stable process. We exploit the flow representation of such processes, and we consider the processes generated by conservative flows. We focus on two classes of conservative α-stable processes (one discrete-time and one continuous-time), and give results for the order of magnitude of the ruin probability as the initial capital goes to infinity. We also prove a solidarity property for null-recurrent Markov chains as an auxiliary result, which might be of independent interest.


2001 ◽  
Vol 38 (04) ◽  
pp. 975-994 ◽  
Author(s):  
Christophe Andrieu ◽  
Laird A. Breyer ◽  
Arnaud Doucet

Simulated annealing is a popular and much studied method for maximizing functions on finite or compact spaces. For noncompact state spaces, the method is still sound, but convergence results are scarce. We show here how to prove convergence in such cases, for Markov chains satisfying suitable drift and minorization conditions.


2010 ◽  
Vol 347 (5) ◽  
pp. 795-805 ◽  
Author(s):  
A. Tejada ◽  
O.R. González ◽  
W.S. Gray

Sign in / Sign up

Export Citation Format

Share Document