Context-Aware Cognitive Agent Architecture for Ambient User Interfaces

Author(s):  
Youngho Lee ◽  
Choonsung Shin ◽  
Woontack Woo
2008 ◽  
Author(s):  
Mohammed Amduka ◽  
Jon Russo ◽  
Krishna Jha ◽  
Andre DeHon ◽  
Richard Lethin ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Inayat Khan ◽  
Sanam Shahla Rizvi ◽  
Shah Khusro ◽  
Shaukat Ali ◽  
Tae-Sun Chung

The usage of a smartphone while driving has been declared a global portent and has been admitted as a leading cause of crashes and accidents. Numerous solutions, such as Android Auto and CarPlay, are used to facilitate for the drivers by minimizing driver distractions. However, these solutions restrict smartphone usage, which is impractical in real driving scenarios. This research paper presents a comprehensive analysis of the available solutions to identify issues in smartphone activities. We have used empirical evaluation and dataset-based evaluation to investigate the issues in the existing smartphone user interfaces. The results show that using smartphones while driving can disrupt normal driving and may lead to change the steering wheel abruptly, focus off the road, and increases cognitive load, which could collectively result in a devastating situation. To justify the arguments, we have conducted an empirical study by collecting data using maxed mode survey, i.e., questionnaires and interviews from 98 drivers. The results show that existing smartphone-based solutions are least suitable due to numerous issues (e.g., complex and rich interfaces, redundant and time-consuming activities, requiring much visual and mental attention, and contextual constraints), making their effectiveness less viable for the drivers. Based on findings obtained from Ordinal Logistic Regression (OLR) models, it is recommended that the interactions between the drivers and smartphone could be minimized by developing context-aware adaptive user interfaces to overcome the chances of accidents.


Rich Internet Applications (RIAs) are considered one kind of Web 2.0 application; however, they have demonstrated to have the potential to transcend throughout the steps in the Web evolution, from Web 2.0 to Web 4.0. In some cases, RIAs can be leveraged to overcome the challenges in developing other kinds of Web-based applications. In other cases, the challenges in the development of RIAs can be overcome by using additional technologies from the Web technology stack. From this perspective, the new trends in the development of RIAs can be identified by analyzing the steps in the Web evolution. This chapter presents these trends, including cloud-based RIAs development and mashups-rich User Interfaces (UIs) development as two easily visible trends related to Web 2.0. Similarly, semantic RIAs, RMAs (Rich Mobile Applications), and context-aware RIAs are some of the academic proposals related to Web 3.0 and Web 4.0 that are discussed in this chapter.


Author(s):  
Jan Willem Streefkerk ◽  
Myra P. van Esch-Bussemakers ◽  
Mark A. Neerincx ◽  
Rosemarijn Looije

Evaluation refines and validates design solutions in order to establish adequate user experiences. For mobile user interfaces in dynamic and critical environments, user experiences can vary enormously, setting high requirements for evaluation. This chapter presents a framework for the selection, combination, and tuning of evaluation methods. It identifies seven evaluation constraints, that is, the development stage, the complexity of the design, the purpose, participants, setting, duration, and cost of evaluation, which influence the appropriateness of the method. Using a combination of methods in different settings (such as Wizard-of-Oz, game-based, and field evaluations) a concise, complete, and coherent set of user experience data can be gathered, such as performance, situation awareness, trust, and acceptance. Applying this framework to a case study on context-aware mobile interfaces for the police resulted in specific guidelines for selecting evaluation methods and succeeded to capture the mobile context and its relation to the user experience.


Author(s):  
Anil Shankar ◽  
Juan Quiroz ◽  
Sergiu M. Dascalu ◽  
Sushil J. Louis ◽  
Monica N. Nicolescu

2013 ◽  
Vol 13 (4) ◽  
pp. 53-66 ◽  
Author(s):  
Tomas Cerny ◽  
Karel Cemus ◽  
Michael J. Donahoo ◽  
Eunjee Song

Sign in / Sign up

Export Citation Format

Share Document