Maximum Principle and Gradient Estimates for Stationary Solutions of the Navier-Stokes Equations: A Partly Numerical Investigation

Author(s):  
Robert Finn ◽  
Abderrahim Ouazzi ◽  
Stefan Turek
2016 ◽  
Vol 42 (2) ◽  
pp. 357-367 ◽  
Author(s):  
Dao Trong Quyet ◽  
Nguyen Viet Tuan

2021 ◽  
Vol 2090 (1) ◽  
pp. 012046
Author(s):  
Nikolay M. Evstigneev

Abstract The extension of the classical A.N. Kolmogorov’s flow problem for the stationary 3D Navier-Stokes equations on a stretched torus for velocity vector function is considered. A spectral Fourier method with the Leray projection is used to solve the problem numerically. The resulting system of nonlinear equations is used to perform numerical bifurcation analysis. The problem is analyzed by constructing solution curves in the parameter-phase space using previously developed deflated pseudo arc-length continuation method. Disconnected solutions from the main solution branch are found. These results are preliminary and shall be generalized elsewhere.


Author(s):  
Emmanuel Audusse ◽  
Marie-Odile Bristeau

Finite-Volume Solvers for a Multilayer Saint-Venant SystemWe consider the numerical investigation of two hyperbolic shallow water models. We focus on the treatment of the hyperbolic part. We first recall some efficient finite volume solvers for the classical Saint-Venant system. Then we study their extensions to a new multilayer Saint-Venant system. Finally, we use a kinetic solver to perform some numerical tests which prove that the 2D multilayer Saint-Venant system is a relevant alternative to 3D hydrostatic Navier-Stokes equations.


2016 ◽  
Vol 26 (05) ◽  
pp. 1650086
Author(s):  
Tingting Tang ◽  
Zhiyong Li ◽  
J. M. McDonough ◽  
P. D. Hislop

In this paper, a discrete dynamical system (DDS) is derived from the generalized Navier–Stokes equations for incompressible flow in porous media via a Galerkin procedure. The main difference from the previously studied poor man’s Navier–Stokes equations is the addition of forcing terms accounting for linear and nonlinear drag forces of the medium — Darcy and Forchheimer terms. A detailed numerical investigation focusing on the bifurcation parameters due to these additional terms is provided in the form of regime maps, time series, power spectra, phase portraits and basins of attraction, which indicate system behaviors in agreement with expected physical fluid flow through porous media. As concluded from the previous studies, this DDS can be employed in subgrid-scale models of synthetic-velocity form for large-eddy simulation of turbulent flow through porous media.


Sign in / Sign up

Export Citation Format

Share Document