Connections between Statistical Depth Functions and Fuzzy Sets

Author(s):  
Pedro Terán
2021 ◽  
Vol 48 (2) ◽  
Author(s):  
Olusola S. Makinde ◽  

Several multivariate depth functions have been proposed in the literature, of which some satisfy all the conditions for statistical depth functions while some do not. Spatial depth is known to be invariant to spherical and shift transformations. In this paper, the possibility of using different versions of spatial depth in classification is considered. The covariance-adjusted, weighted, and kernel-based versions of spatial depth functions are presented to classify multivariate outcomes. We extend the maximal depth classification notions for the covariance-adjusted, weighted, and kernel-based spatial depth versions. The classifiers' performance is considered and compared with some existing classification methods using simulated and real datasets.


Author(s):  
Luca Rendsburg ◽  
Damien Garreau

AbstractRecently, learning only from ordinal information of the type “item x is closer to item y than to item z” has received increasing attention in the machine learning community. Such triplet comparisons are particularly well suited for learning from crowdsourced human intelligence tasks, in which workers make statements about the relative distances in a triplet of items. In this paper, we systematically investigate comparison-based centrality measures on triplets and theoretically analyze their underlying Euclidean notion of centrality. Two such measures already appear in the literature under opposing approaches, and we propose a third measure, which is a natural compromise between these two. We further discuss their relation to statistical depth functions, which comprise desirable properties for centrality measures, and conclude with experiments on real and synthetic datasets for medoid estimation and outlier detection.


Author(s):  
Luis González-De La Fuente ◽  
Alicia Nieto-Reyes ◽  
Pedro Terán
Keyword(s):  

Test ◽  
2021 ◽  
Author(s):  
Giovanni Saraceno ◽  
Claudio Agostinelli

AbstractIn the classical contamination models, such as the gross-error (Huber and Tukey contamination model or case-wise contamination), observations are considered as the units to be identified as outliers or not. This model is very useful when the number of considered variables is moderately small. Alqallaf et al. (Ann Stat 37(1):311–331, 2009) show the limits of this approach for a larger number of variables and introduced the independent contamination model (cell-wise contamination) where now the cells are the units to be identified as outliers or not. One approach to deal, at the same time, with both type of contamination is filter out the contaminated cells from the data set and then apply a robust procedure able to handle case-wise outliers and missing values. Here, we develop a general framework to build filters in any dimension based on statistical data depth functions. We show that previous approaches, e.g., Agostinelli et al. (TEST 24(3):441–461, 2015b) and Leung et al. (Comput Stat Data Anal 111:59–76, 2017), are special cases. We illustrate our method by using the half-space depth.


Sign in / Sign up

Export Citation Format

Share Document