Urban Arterial Traffic Coordination Control System

Author(s):  
Jianyu Zhao ◽  
Diankui Tang ◽  
Xin Geng ◽  
Lei Jia
2013 ◽  
Vol 680 ◽  
pp. 488-494
Author(s):  
Hai Ming Niu ◽  
Zhong Xu Han ◽  
Huan Pao Huang ◽  
Hong Min Zhang

Base on the mathematical model of a common coordinated control system in field of thermal, by analyzing characteristics of the controlled object supercritical once-through boiler coordinated control system, the article puts forward suggestions for improvement, and verifies the results of the analysis by test.


Author(s):  
Qi Li ◽  
Yifei Chen ◽  
Manling Wu ◽  
Shangfeng Du ◽  
Qiaoxue Dong ◽  
...  

2013 ◽  
Vol 756-759 ◽  
pp. 372-375
Author(s):  
Hong Bin Tian

In order to increase the movement capability of the robotic visual system in three-dimension space, the paper designs an obstacle-avoidance algorithm based on robotic movement visual by effectively processing the visual information colleted by the robotics. This paper establishes a structural model of coordination control system. The obstacles can be effectively identified and avoided by the obstacle-avoidance theory in the robotics coordination operation. The mathematical model of the obstacle-avoidance algorithm can predict the locations of the obstacles. The experiment proves the proposed algorithm can avoid the obstacles in three-dimension space and the accuracy is very high.


2014 ◽  
Vol 543-547 ◽  
pp. 1417-1422
Author(s):  
Wei Li ◽  
Xin Bi ◽  
Yun Xia Cao ◽  
Jin Song Du

Traffic congestion is a major concern for many cities throughout the world. Developing a sophisticated traffic monitoring and control system would result in an effective solution to this problem. In order to reduce traffic delay, a novel urban arterial traffic signal coordinated control method is presented. The total delay of downstream and upstream vehicles is considered and the function describing the relationship between vehicles delay and signal offset among intersections is established. Finally, comparing the performance of traffic signal under method proposed in this paper with the traditional isolated traffic signal control method, the microscopic simulation results show that the method proposed in this paper has better performance in the aspect of reducing the vehicles delay. The offset model is tested in a simulation environment consisting of a core area of three intersections. It can be concluded that the proposed method is much more effective in relieving oversaturation in a network than the isolated intersection control strategy.


Sign in / Sign up

Export Citation Format

Share Document