Adenovirus-mediated regulatable Expression of human Factor IX in vitro and in vivo

Author(s):  
M. A. Srour ◽  
H. Fechner ◽  
X. Wang ◽  
U. Siemetzki ◽  
T. Albert ◽  
...  
Blood ◽  
1996 ◽  
Vol 87 (12) ◽  
pp. 5095-5103 ◽  
Author(s):  
G Hortelano ◽  
A Al-Hendy ◽  
FA Ofosu ◽  
PL Chang

A potentially cost-effective strategy for gene therapy of hemophilia B is to create universal factor IX-secreting cell lines suitable for implantation into different patients. To avoid graft rejection, the implanted cells are enclosed in alginate-polylysine-alginate microcapsules that are permeable to factor IX diffusion, but impermeable to the hosts' immune mediators. This nonautologous approach was assessed by implanting encapsulated mouse myoblasts secreting human factor IX into allogeneic mice. Human factor IX was detected in the mouse plasma for up to 14 days maximally at approximately 4 ng/mL. Antibodies to human factor IX were detected after 3 weeks at escalating levels, which were sustained throughout the entire experiment (213 days). The antibodies accelerated the clearance of human factor IX from the circulation of the implanted mice and inhibited the detection of human factor IX in the mice plasma in vitro. The encapsulated myoblasts retrieved periodically from the implanted mice up to 213 days postimplantation were viable and continued to secrete human factor IX ex vivo at undiminished rates, hence suggesting continued factor IX gene expression in vivo. Thus, this allogeneic gene therapy strategy represents a potentially feasible alternative to autologous approaches for the treatment of hemophilia B.


1977 ◽  
Author(s):  
P.A. Gentry ◽  
A.R. Thompson ◽  
A.W. Forrey

In preparing a factor IX concentrate with a high yield and low hepatitis and thromboembolic risks, we have tested this material for survival in an in vivo system, the hemophiliac dog. By following the disappearance of radiolabeled, isolated factor IX in addition to the classic clotting assays, data on protein survival and more accurate kinetic parameters were obtained.Crude factor IX concentrate was prepared by batchwise adsorption-elution with DEAE-Sephadex using cryoprecipitate-poor human plasma. Isolated human factor IX was radiolabeled with 125I by chloramine-T without in vitro loss of clotting activity (Thompson, J Clin Invest, in press, 1977). A preparation containing both crude and isolated factor IX was then subjected to filtration (0.22 μm) and lyophilization; clotting and radioactivity were not altered by these steps.Following infusion of the combined preparation into a dog with severe hemophilia B (0% baseline factor IX) 10 post infusion samples were taken over 96 h for determination of radioactivity and factor IX clotting activity. These data were then analyzed by fitting to a two exponential expression using a Marquart non-linear least squares numerical procedure for a two compartment open model. The central volume was 14.5% of the animal’s body weight; the total volume of distribution was 28% with a t 1/2 distribution of 114 min. The t 1/2 elimination was 20 h; the slower phase of elimination (β, or that affected by redistribution) had a t 1/2 of 40 h. Factor IX clotting activity from the crude concentrate closely paralleled radioactivity from the isolated factor IX throughout the 96 h; t 1/2 β was slightly longer from the clotting activity data.


Blood ◽  
1998 ◽  
Vol 92 (4) ◽  
pp. 1287-1296 ◽  
Author(s):  
John A. Samis ◽  
Eunice Kam ◽  
Michael E. Nesheim ◽  
Alan R. Giles

Abstract In preliminary studies, the generation of thrombin in vivo was found to induce a 92% loss of functional activity of factor IX (F.IX) despite the detection by Western blotting of a product resembling activated F.IX (F.IXa) and a 25% increase in F.IX antigen levels (Hoogendoorn et al, Thromb Haemost 69:1127, 1993 [abstr]). These changes were associated with evidence of increased elastase availability. To study the possibility that these two observations were related, a detailed physical and functional characterization of the hydrolysis of purified human F.IX by human neutrophil elastase (HNE) was performed in vitro. An activated partial thromboplastin time (aPTT) clotting assay demonstrated that, although HNE eliminated the potential of F.IX to be activated, it only marginally reduced the F.IXa activity. Reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) indicated that HNE treatment of F.IX generated cleavage products of 30 and 20 kD that could not be distinguished from the respective heavy and light chain peptides that were identified in parallel studies when F.IX was activated by activated bovine F.XI (F.XIa), one of its physiological activators. In addition, nonreducing SDS-PAGE demonstrated that HNE-treated F.IX formed no complexes with antithrombin III (ATIII) in the presence of heparin. Furthermore, HNE-treated F.IX was unable to (1) bind the active site probe p-aminobenzamidine; (2) hydrolyze the synthetic peptide substrate CH3SO2-Leu-Gly-Arg-p-nitroanilide; and (3) activate human factor X (F.X). In contrast to dansyl-Glu-Gly-Arg-chloromethyl ketone (dEGR)-inactivated F.IXa, HNE-treated F.IX (0.01 to 10,000 pmol/L) failed to inhibit the clotting activity of F.IXa (10 pmol/L) in the aPTT. NH2-terminal sequencing indicated that HNE cleaved human F.IX at Thr140, Thr144, Ile164, Thr172, and Val181. The cleavages at Thr140/Thr144 and at Thr172/Val181 are both very close to the normal F.XIa -(Arg145) and β-(Arg180) cleavage sites, respectively. In summary, the results suggest that the activatability of F.IX is eliminated after cleavage by HNE and that the inability of HNE-treated F.IX to support F.IXa-like coagulant function is a consequence of improper active site formation. These in vitro observations support the possibility that increased HNE cleavage of F.IX in vivo may contribute to the disregulation of hemostasis that occurs in conditions such as disseminated intravascular coagulation (DIC). © 1998 by The American Society of Hematology.


Blood ◽  
1998 ◽  
Vol 92 (4) ◽  
pp. 1287-1296
Author(s):  
John A. Samis ◽  
Eunice Kam ◽  
Michael E. Nesheim ◽  
Alan R. Giles

In preliminary studies, the generation of thrombin in vivo was found to induce a 92% loss of functional activity of factor IX (F.IX) despite the detection by Western blotting of a product resembling activated F.IX (F.IXa) and a 25% increase in F.IX antigen levels (Hoogendoorn et al, Thromb Haemost 69:1127, 1993 [abstr]). These changes were associated with evidence of increased elastase availability. To study the possibility that these two observations were related, a detailed physical and functional characterization of the hydrolysis of purified human F.IX by human neutrophil elastase (HNE) was performed in vitro. An activated partial thromboplastin time (aPTT) clotting assay demonstrated that, although HNE eliminated the potential of F.IX to be activated, it only marginally reduced the F.IXa activity. Reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) indicated that HNE treatment of F.IX generated cleavage products of 30 and 20 kD that could not be distinguished from the respective heavy and light chain peptides that were identified in parallel studies when F.IX was activated by activated bovine F.XI (F.XIa), one of its physiological activators. In addition, nonreducing SDS-PAGE demonstrated that HNE-treated F.IX formed no complexes with antithrombin III (ATIII) in the presence of heparin. Furthermore, HNE-treated F.IX was unable to (1) bind the active site probe p-aminobenzamidine; (2) hydrolyze the synthetic peptide substrate CH3SO2-Leu-Gly-Arg-p-nitroanilide; and (3) activate human factor X (F.X). In contrast to dansyl-Glu-Gly-Arg-chloromethyl ketone (dEGR)-inactivated F.IXa, HNE-treated F.IX (0.01 to 10,000 pmol/L) failed to inhibit the clotting activity of F.IXa (10 pmol/L) in the aPTT. NH2-terminal sequencing indicated that HNE cleaved human F.IX at Thr140, Thr144, Ile164, Thr172, and Val181. The cleavages at Thr140/Thr144 and at Thr172/Val181 are both very close to the normal F.XIa -(Arg145) and β-(Arg180) cleavage sites, respectively. In summary, the results suggest that the activatability of F.IX is eliminated after cleavage by HNE and that the inability of HNE-treated F.IX to support F.IXa-like coagulant function is a consequence of improper active site formation. These in vitro observations support the possibility that increased HNE cleavage of F.IX in vivo may contribute to the disregulation of hemostasis that occurs in conditions such as disseminated intravascular coagulation (DIC). © 1998 by The American Society of Hematology.


2005 ◽  
Vol 79 (24) ◽  
pp. 15238-15245 ◽  
Author(s):  
Alejandra E. Arbetman ◽  
Michael Lochrie ◽  
Shangzhen Zhou ◽  
Jennifer Wellman ◽  
Ciaran Scallan ◽  
...  

ABSTRACT Preexisting humoral immunity to adeno-associated virus (AAV) vectors may limit their clinical utility in gene delivery. We describe a novel caprine AAV (AAV-Go.1) capsid with unique biological properties. AAV-Go.1 capsid was cloned from goat-derived adenovirus preparations. Surprisingly, AAV-Go.1 capsid was 94% identical to the human AAV-5, with differences predicted to be largely on the surface and on or under the spike-like protrusions. In an in vitro neutralization assay using human immunoglobulin G (IgG) (intravenous immune globulin [IVIG]), AAV-Go.1 had higher resistance than AAV-5 (100-fold) and resistance similar to that of AAV-4 or AAV-8. In an in vivo model, SCID mice were pretreated with IVIG to generate normal human IgG plasma levels prior to the administration of AAV human factor IX vectors. Protein expression after intramuscular administration of AAV-Go.1 was unaffected in IVIG-pretreated mice, while it was reduced 5- and 10-fold after administration of AAV-1 and AAV-8, respectively. In contrast, protein expression after intravenous administration of AAV-Go.1 was reduced 7.1-fold, similar to the 3.8-fold reduction observed after AAV-8administration in IVIG-pretreated mice, and protein expression was essentially extinguished after AAV-2 administration in mice pretreated with much less IVIG (15-fold). AAV-Go.1 vectors also demonstrated a marked tropism for lung when administered intravenously in SCID mice. The pulmonary tropism and high neutralization resistance to human preexisting antibodies suggest novel therapeutic uses for AAV-Go.1 vectors, including targeting diseases such as cystic fibrosis. Nonprimate sources of AAVs may be useful to identify additional capsids with distinct tropisms and high resistance to neutralization by human preexisting antibodies.


Blood ◽  
1989 ◽  
Vol 73 (2) ◽  
pp. 438-445
Author(s):  
TD Palmer ◽  
AR Thompson ◽  
AD Miller

Inherited diseases might be treated by introducing normal genes into a patient's somatic tissues to correct the genetic defects. In the case of hemophilia resulting from a missing clotting factor, the required gene could be introduced into any cell as long as active factor reached the circulation. We previously showed that retroviral vectors can efficiently transfer genes into normal skin fibroblasts and that the infected cells can produce high levels of a therapeutic product in vitro. In the current study, we examined the ability of skin fibroblasts to secrete active clotting factor after infection with different retroviral vectors encoding human clotting factor IX. Normal human fibroblasts infected with one vector secreted greater than 3 micrograms factor IX/10(6) cells/24 h. Of this protein, greater than 70% was structurally and functionally indistinguishable from human factor IX derived from normal plasma. This suggests that infected autologous fibroblasts might provide therapeutic levels of factor IX if transplanted into patients suffering from hemophilia B. By transplanting normal diploid fibroblasts infected with the factor IX vectors, we showed that human factor IX can be produced and is circulated at readily detectable levels in rats and mice.


Blood ◽  
1985 ◽  
Vol 66 (6) ◽  
pp. 1302-1308 ◽  
Author(s):  
W Kisiel ◽  
KJ Smith ◽  
BA McMullen

Coagulation factor IX is a vitamin K-dependent glycoprotein that circulates in blood as a precursor of a serine protease. Incubation of human factor IX with human alpha-thrombin resulted in a time and enzyme concentration-dependent cleavage of factor IX yielding a molecule composed of a heavy chain (mol wt 50,000) and a doublet light chain (mol wt 10,000). The proteolysis of factor IX by thrombin was significantly inhibited by physiological levels of calcium ions. Under nondenaturing conditions, the heavy and light chains of thrombin- cleaved factor IX remained strongly associated, but these chains were readily separated by gel filtration in the presence of denaturants. Amino-terminal sequence analyses of the isolated heavy and light chains of thrombin-cleaved human factor IX indicated that thrombin cleaved peptide bonds at Arg327-Val328 and Arg338-Ser339 in this molecule. Comparable cleavages were observed in bovine factor IX by bovine thrombin and occurred at Arg319-Ser320 and Arg339-Ser340. Essentially, a complete loss of factor IX procoagulant activity was associated with its cleavage by thrombin. Furthermore, thrombin-cleaved factor IX neither developed coagulant activity after treatment with factor XIa nor inhibited the coagulant activity of native factor IX. These data indicate that thrombin cleaves factor IX near its active site serine residue, rendering it incapable of activating factor X. Whether or not this reaction occurs in vivo is unknown.


2006 ◽  
Vol 13 ◽  
pp. S331-S332
Author(s):  
Angeles Escarti-Nebot ◽  
Fernando Serrano ◽  
Marcela delRio ◽  
Fernando Larcher ◽  
Antonio Bernad

Blood ◽  
1989 ◽  
Vol 73 (2) ◽  
pp. 438-445 ◽  
Author(s):  
TD Palmer ◽  
AR Thompson ◽  
AD Miller

Abstract Inherited diseases might be treated by introducing normal genes into a patient's somatic tissues to correct the genetic defects. In the case of hemophilia resulting from a missing clotting factor, the required gene could be introduced into any cell as long as active factor reached the circulation. We previously showed that retroviral vectors can efficiently transfer genes into normal skin fibroblasts and that the infected cells can produce high levels of a therapeutic product in vitro. In the current study, we examined the ability of skin fibroblasts to secrete active clotting factor after infection with different retroviral vectors encoding human clotting factor IX. Normal human fibroblasts infected with one vector secreted greater than 3 micrograms factor IX/10(6) cells/24 h. Of this protein, greater than 70% was structurally and functionally indistinguishable from human factor IX derived from normal plasma. This suggests that infected autologous fibroblasts might provide therapeutic levels of factor IX if transplanted into patients suffering from hemophilia B. By transplanting normal diploid fibroblasts infected with the factor IX vectors, we showed that human factor IX can be produced and is circulated at readily detectable levels in rats and mice.


Sign in / Sign up

Export Citation Format

Share Document