Design Loupes: A Bifocal Study to Improve the Management of Engineering Design Innovation by Co-evaluation of the Design Process and Information Sharing Activity

2011 ◽  
pp. 89-105 ◽  
Author(s):  
Rebecca Currano ◽  
Martin Steinert ◽  
Larry Leifer
Author(s):  
Adam Dachowicz ◽  
Siva Chaitanya Chaduvula ◽  
Jitesh H. Panchal ◽  
Mikhail Atallah

The globalization of collaboration in engineering design has raised several new concerns regarding information sharing. In particular, data shared during collaboration has the potential to leak private information through inferences that may be made by another collaborator. Enterprises that must keep certain information confidential, fearing loss of intellectual property, may turn down potential collaborations that would otherwise be mutually beneficial. Thus, there is need for a method to study this tradeoff between confidentiality and value in engineering collaboration. In this paper, a framework for analyzing this tradeoff is proposed, along with an illustrative example of a possible implementation and its effects on the collaborative design process. This framework estimates and quantifies the confidentiality loss and value gain associated with information revelation during design iterations. We believe that such analysis would aid designers in making better decisions about sharing information with their collaborators. Studying this tradeoff may incentivize designers to engage in more frequent, and more secure, collaboration.


Science Scope ◽  
2017 ◽  
Vol 041 (01) ◽  
Author(s):  
Nicholas Garafolo ◽  
Nidaa Makki ◽  
Katrina Halasa ◽  
Wondimu Ahmed ◽  
Kristin Koskey ◽  
...  

Procedia CIRP ◽  
2021 ◽  
Vol 100 ◽  
pp. 660-665
Author(s):  
Giovanni Formentini ◽  
Núria Boix Rodríguez ◽  
Claudio Favi ◽  
Marco Marconi

2013 ◽  
Vol 712-715 ◽  
pp. 2888-2893
Author(s):  
Hai Qiang Liu ◽  
Ming Lv

In order to realize information sharing and interchange of complex product multidisciplinary collaborative design (MCD) design process and resources. The Process integrated system control of product multidisciplinary collaborative design was analyzed firstly in this paper, then design process of complex product for supporting multidisciplinary collaborative was introduced, a detailed description is given of the organization structure and modeling process of MCD-oriented Integration of Product Design Meta-model ; and concrete implement process of process integrated system control method was introduced to effectively realize information sharing and interchange between product design process and resources.


Author(s):  
Michael J. Safoutin ◽  
Robert P. Smith

Abstract As engineering design is subjected to increasingly formal study, an informal attitude continues to surround the topic of iteration. Today there is no standard definition or typology of iteration, no grounding theory, few metrics, and a poor understanding of its role in the design process. Existing literature provides little guidance in investigating issues of design that might be best approached in terms of iteration. We review contributions of existing literature toward the understanding of iteration in design, develop a classification of design iteration, compare iterative aspects of human and automated design, and draw some conclusions concerning management of iteration and approaches to design automation.


Author(s):  
LeRoy E. Taylor ◽  
Mark R. Henderson

Abstract This paper describes the roles of features and abstraction mechanisms in the mechanical design process, mechanical designs, and product models of mechanical designs. It also describes the relationship between functions and features in mechanical design. It is our experience that many research efforts exist in the areas of design and product modeling and, further, that these efforts must be cataloged and compared. To this end, this paper culminates with the presentation of a multi-dimensional abstraction space which provides a unique framework for (a) comparing mechanical engineering design research efforts, (b) relating conceptual objects used in the life cycle of mechanical products, and (c) defining a product modeling space.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Michael S. Rugh ◽  
Donald J. Beyette ◽  
Mary Margaret Capraro ◽  
Robert M. Capraro

Purpose The purpose of this study is to examine a week-long science, technology, engineering and mathematics (STEM) project-based learning (PBL) activity that integrates a new educational technology and the engineering design process to teach middle and high school students the concepts involved in rotational physics. The technology and teaching method described in this paper can be applied to a wide variety of STEM content areas. Design/methodology/approach As an educational technology, the dynamic and interactive mathematical expressions (DIME) map system automatically generates an interactive, connected concept map of mathematically based concepts extracted from a portable document format textbook chapter. Over five days, students used DIME maps to engage in meaningful self-guided learning within the engineering design process and STEM PBL. Findings Using DIME maps within a STEM PBL activity, students explored the physics behind spinning objects, proposed multiple creative designs and built a variety of spinners to meet specified criteria and constraints. Practical implications STEM teachers can use DIME maps and STEM PBL to support their students in making connections between what they learn in the classroom and real-world scenarios. Social implications For any classroom with computers, tablets or phones and an internet connection, DIME maps are an accessible educational technology that provides an alternative representation of knowledge for learners who are underserved by traditional methods of instruction. Originality/value For STEM teachers and education researchers, the activity described in this paper uses advances in technology (DIME maps and slow-motion video capture on cell phones) and pedagogy (STEM PBL and the engineering design process) to enable students to engage in meaningful learning.


Sign in / Sign up

Export Citation Format

Share Document