scholarly journals Towards Optimal Microarray Universal Reference Sample Designs: An In-Silico Optimization Approach

Author(s):  
George Potamias ◽  
Sofia Kaforou ◽  
Dimitris Kafetzopoulos
Author(s):  
George Potamias ◽  
Sofia Kaforou ◽  
Dimitris Kafetzopoulos

In this paper, the authors present an assessment of the reliability of microarray experiments as well as their cross-laboratory/platform reproducibility rise as the major need. A critical challenge concerns the design of optimal universal reference rna (urr) samples to maximize detectable spots in two-color/channel microarray experiments, decrease the variability of microarray data, and finally ease the comparison between heterogeneous microarray datasets. Toward this target, the authors present an in-silico (binary) optimization process the solutions of which present optimal urr sample designs. Setting a cut-off threshold value over which a gene is considered as detectably expressed enables the process. Experimental results are quite encouraging and the related discussion highlights the suitability and flexibility of the approach.


Author(s):  
Georgia Tsiliki ◽  
Sofia Kaforou ◽  
Manouela Kapsetaki ◽  
George Potamias ◽  
Dimitris Kafetzopoulos

2009 ◽  
Vol 8 (1) ◽  
pp. 290-299 ◽  
Author(s):  
Wei-Jun Qian ◽  
Tao Liu ◽  
Vladislav A. Petyuk ◽  
Marina A. Gritsenko ◽  
Brianne O. Petritis ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6979
Author(s):  
Lijun Yang ◽  
Dawei Wang ◽  
Dejun Ma ◽  
Di Zhang ◽  
Nuo Zhou ◽  
...  

A series of novel 3-phenoxy-4-(3-trifluoromethylphenyl)pyridazines 2–5 were designed, based on the structure of our previous lead compound 1 through the in silico structure-guided optimization approach. The results showed that some of these new compounds showed a good herbicidal activity at the rate of 750 g ai/ha by both pre- and post-emergence applications, especially compound 2a, which displayed a comparable pre-emergence herbicidal activity to diflufenican at 300–750 g ai/ha, and a higher post-emergence herbicidal activity than diflufenican at the rates of 300–750 g ai/ha. Additionally, 2a was safe to wheat by both pre- and post-emergence applications at 300 g ai/ha, showing the compound’s potential for weed control in wheat fields. Our molecular simulation studies revealed the important factors involved in the interaction between 2a and Synechococcus PDS. This work provided a lead compound for weed control in wheat fields.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pau Romero ◽  
Miguel Lozano ◽  
Francisco Martínez-Gil ◽  
Dolors Serra ◽  
Rafael Sebastián ◽  
...  

The combination of machine learning methods together with computational modeling and simulation of the cardiovascular system brings the possibility of obtaining very valuable information about new therapies or clinical devices through in-silico experiments. However, the application of machine learning methods demands access to large cohorts of patients. As an alternative to medical data acquisition and processing, which often requires some degree of manual intervention, the generation of virtual cohorts made of synthetic patients can be automated. However, the generation of a synthetic sample can still be computationally demanding to guarantee that it is clinically meaningful and that it reflects enough inter-patient variability. This paper addresses the problem of generating virtual patient cohorts of thoracic aorta geometries that can be used for in-silico trials. In particular, we focus on the problem of generating a cohort of patients that meet a particular clinical criterion, regardless the access to a reference sample of that phenotype. We formalize the problem of clinically-driven sampling and assess several sampling strategies with two goals, sampling efficiency, i.e., that the generated individuals actually belong to the target population, and that the statistical properties of the cohort can be controlled. Our results show that generative adversarial networks can produce reliable, clinically-driven cohorts of thoracic aortas with good efficiency. Moreover, non-linear predictors can serve as an efficient alternative to the sometimes expensive evaluation of anatomical or functional parameters of the organ of interest.


2013 ◽  
pp. 1676-1687
Author(s):  
George Potamias ◽  
Sofia Kaforou ◽  
Dimitris Kafetzopoulos

In this paper, the authors present an assessment of the reliability of microarray experiments as well as their cross-laboratory/platform reproducibility rise as the major need. A critical challenge concerns the design of optimal universal reference rna (urr) samples to maximize detectable spots in two-color/channel microarray experiments, decrease the variability of microarray data, and finally ease the comparison between heterogeneous microarray datasets. Toward this target, the authors present an in-silico (binary) optimization process the solutions of which present optimal urr sample designs. Setting a cut-off threshold value over which a gene is considered as detectably expressed enables the process. Experimental results are quite encouraging and the related discussion highlights the suitability and flexibility of the approach.


2020 ◽  
Vol 54 (6) ◽  
pp. 1703-1722 ◽  
Author(s):  
Narges Soltani ◽  
Sebastián Lozano

In this paper, a new interactive multiobjective target setting approach based on lexicographic directional distance function (DDF) method is proposed. Lexicographic DDF computes efficient targets along a specified directional vector. The interactive multiobjective optimization approach consists in several iteration cycles in each of which the Decision Making Unit (DMU) is presented a fixed number of efficient targets computed corresponding to different directional vectors. If the DMU finds one of them promising, the directional vectors tried in the next iteration are generated close to the promising one, thus focusing the exploration of the efficient frontier on the promising area. In any iteration the DMU may choose to finish the exploration of the current region and restart the process to probe a new region. The interactive process ends when the DMU finds its most preferred solution (MPS).


Sign in / Sign up

Export Citation Format

Share Document