Multi Objective Genetic Approach for Solving Vehicle Routing Problem with Time Window

Author(s):  
Padmabati Chand ◽  
J. R. Mohanty
2019 ◽  
Vol 31 (5) ◽  
pp. 513-525
Author(s):  
Manman Li ◽  
Jian Lu ◽  
Wenxin Ma

Providing a satisfying delivery service is an important way to maintain the customers’ loyalty and further expand profits for manufacturers and logistics providers. Considering customers’ preferences for time windows, a bi-objective time window assignment vehicle routing problem has been introduced to maximize the total customers’ satisfaction level for assigned time windows and minimize the expected delivery cost. The paper designs a hybrid multi-objective genetic algorithm for the problem that incorporates modified stochastic nearest neighbour and insertion-based local search. Computational results show the positive effect of the hybridization and satisfactory performance of the metaheuristics. Moreover, the impacts of three characteristics are analysed including customer distribution, the number of preferred time windows per customer and customers’ preference type for time windows. Finally, one of its extended problems, the bi-objective time window assignment vehicle routing problem with time-dependent travel times has been primarily studied.


Vehicle Routing Problem time window (VRPW) used in supply chain management in the physical delivery of goods and services, and the determination of all routes for a fleet of vehicles, starting and ending at a depot and serving customers with known demands by increasing the efficiency and profitability of transportation systems. The main objective of this study is to refutes a multi-objective vehicle routing problem with time windows by minimization of the number of vehicles, the total distance traveled and rout balance not sufficient instead of using 'total time balance'. To test the performance of the objective it considers GA with the fitness Aggregation approach comparing with the related literature based on Solomon’s benchmark instance standard data. The time makespan produced by FAGA and the time makespan mentioned in related literature is compared. From the result, fitness Aggregation approach with genetic algorizim (FAGA) provides better result including the real-time window as compared to previous work .


2020 ◽  
Vol 11 (1) ◽  
pp. 1-22 ◽  
Author(s):  
Méziane Aïder ◽  
Asma Skoudarli

In this article, the single capacitated vehicle routing problem with time windows and uncertain demands is studied. Having a set of customers whose actual demand is not known in advance, needs to be serviced. The goal of the problem is to find a set of routes with the lowest total travel distance and tardiness time, subject to vehicle capacity and time window constraints. Two uncertainty types can be distinguished in the literature: random and epistemic uncertainties. Because several studies focalized upon the random aspect of uncertainty, the article proposes to tackle the problem by considering dominance relations to handle epistemic uncertainty in the objective functions. Further, an epistemic multi-objective local search-based approach is proposed for studying the behavior of such a representation of demands on benchmark instances generated following a standard generator available in the literature. Finally, the results achieved by the proposed method using epistemic representation are compared to those reached by a deterministic version. Encouraging results have been obtained.


Author(s):  
Hongguang Wu ◽  
Yuelin Gao ◽  
Wanting Wang ◽  
Ziyu Zhang

AbstractIn this paper, we propose a vehicle routing problem with time windows (TWVRP). In this problem, we consider a hard time constraint that the fleet can only serve customers within a specific time window. To solve this problem, a hybrid ant colony (HACO) algorithm is proposed based on ant colony algorithm and mutation operation. The HACO algorithm proposed has three innovations: the first is to update pheromones with a new method; the second is the introduction of adaptive parameters; and the third is to add the mutation operation. A famous Solomon instance is used to evaluate the performance of the proposed algorithm. Experimental results show that HACO algorithm is effective against solving the problem of vehicle routing with time windows. Besides, the proposed algorithm also has practical implications for vehicle routing problem and the results show that it is applicable and effective in practical problems.


Sign in / Sign up

Export Citation Format

Share Document