On-Line Extreme Learning Machine for Training Time-Varying Neural Networks

Author(s):  
Yibin Ye ◽  
Stefano Squartini ◽  
Francesco Piazza
Author(s):  
Shuxiang Xu

An Extreme Learning Machine (ELM) randomly chooses hidden neurons and analytically determines the output weights (Huang, et al., 2005, 2006, 2008). With the ELM algorithm, only the connection weights between hidden layer and output layer are adjusted. The ELM algorithm tends to generalize better at a very fast learning speed: it can learn thousands of times faster than conventionally popular learning algorithms (Huang, et al., 2006). Artificial Neural Networks (ANNs) have been widely used as powerful information processing models and adopted in applications such as bankruptcy prediction, predicting costs, forecasting revenue, forecasting share prices and exchange rates, processing documents, and many more. Higher Order Neural Networks (HONNs) are ANNs in which the net input to a computational neuron is a weighted sum of products of its inputs. Real life data are not usually perfect. They contain wrong, incomplete, or vague data. Hence, it is usual to find missing data in many information sources used. Missing data is a common problem in statistical analysis (Little & Rubin, 1987). This chapter uses the Extreme Learning Machine (ELM) algorithm for HONN models and applies it in several significant business cases, which involve missing datasets. The experimental results demonstrate that HONN models with the ELM algorithm offer significant advantages over standard HONN models, such as faster training, as well as improved generalization abilities.


Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1284
Author(s):  
Licheng Cui ◽  
Huawei Zhai ◽  
Hongfei Lin

An extreme learning machine (ELM) is an innovative algorithm for the single hidden layer feed-forward neural networks and, essentially, only exists to find the optimal output weight so as to minimize output error based on the least squares regression from the hidden layer to the output layer. With a focus on the output weight, we introduce the orthogonal constraint into the output weight matrix, and propose a novel orthogonal extreme learning machine (NOELM) based on the idea of optimization column by column whose main characteristic is that the optimization of complex output weight matrix is decomposed into optimizing the single column vector of the matrix. The complex orthogonal procrustes problem is transformed into simple least squares regression with an orthogonal constraint, which can preserve more information from ELM feature space to output subspace, these make NOELM more regression analysis and discrimination ability. Experiments show that NOELM has better performance in training time, testing time and accuracy than ELM and OELM.


2019 ◽  
Vol 361 ◽  
pp. 196-211 ◽  
Author(s):  
Carlos Perales-González ◽  
Mariano Carbonero-Ruz ◽  
David Becerra-Alonso ◽  
Javier Pérez-Rodríguez ◽  
Francisco Fernández-Navarro

Sign in / Sign up

Export Citation Format

Share Document