scholarly journals Computational Complexity of Smooth Differential Equations

Author(s):  
Akitoshi Kawamura ◽  
Hiroyuki Ota ◽  
Carsten Rösnick ◽  
Martin Ziegler
2016 ◽  
Vol 20 (suppl. 3) ◽  
pp. 755-767 ◽  
Author(s):  
Xiao-Jun Yang ◽  
Zhi-Zhen Zhang ◽  
Tenreiro Machado ◽  
Dumitru Baleanu

This paper treats the description of non-differentiable dynamics occurring in complex systems governed by local fractional partial differential equations. The exact solutions of diffusion and relaxation equations with Mittag-Leffler and exponential decay defined on Cantor sets are calculated. Comparative results with other versions of the local fractional derivatives are discussed.


1996 ◽  
Vol 06 (08) ◽  
pp. 1187-1209 ◽  
Author(s):  
M. LO SCHIAVO

This paper deals with a kinetic modelling of the cellular dynamics of tumors interacting with an active immune defence system. The analysis starts from the model proposed in Refs. 4 and 5 where a kinetic (cellular) theory of the interactions and competition between tumor cells and immune system is developed in a framework similar to the one of nonlinear statistical mechanics. The class of models proposed in this paper replaces the system of integro-differential equations by a system of ordinary differential equations. This has several advantages. Firstly, it allows immediate interpretations of the control parameters and is characterized by a relatively lower computational complexity. Further, some interesting periodicity properties of the solutions are characterized.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Subhendu Paul ◽  
Emmanuel Lorin

AbstractWe propose a novel model based on a set of coupled delay differential equations with fourteen delays in order to accurately estimate the incubation period of COVID-19, employing publicly available data of confirmed corona cases. In this goal, we separate the total cases into fourteen groups for the corresponding fourteen incubation periods. The estimated mean incubation period we obtain is 6.74 days (95% Confidence Interval(CI): 6.35 to 7.13), and the 90th percentile is 11.64 days (95% CI: 11.22 to 12.17), corresponding to a good agreement with statistical supported studies. This model provides an almost zero-cost computational complexity to estimate the incubation period.


Author(s):  
Anwar Sadath ◽  
C. P. Vyasarayani

Delay differential equations (DDEs) are infinite-dimensional systems, therefore analyzing their stability is a difficult task. The delays can be discrete or distributed in nature. DDEs with distributed delays are referred to as delay integro-differential equations (DIDEs) in the literature. In this work, we propose a method to convert the DIDEs into a system of ordinary differential equations (ODEs). The stability of the DIDEs can then be easily studied from the obtained system of ODEs. By using a space-time transformation, we convert the DIDEs into a partial differential equation (PDE) with a time-dependent boundary condition. Then, by using the Galerkin method, we obtain a finite-dimensional approximation to the PDE. The boundary condition is incorporated into the Galerkin approximation using the Tau method. The resulting system of ODEs will have time-periodic coefficients, provided the coefficients of the DIDEs are time periodic. Thus, we use Floquet theory to analyze the stability of the resulting ODE systems. We study several numerical examples of DIDEs with different kernel functions. We show that the results obtained using our method are in close agreement with those existing in the literature. The theory developed in this work can also be used for the integration of DIDEs. The computational complexity of our numerical integration method is O(t), whereas the direct brute-force integration of DIDE has a computational complexity of O(t2).


2014 ◽  
Vol 10 (1) ◽  
Author(s):  
Akitoshi Kawamura ◽  
Hiroyuki Ota ◽  
Carsten Rösnick ◽  
Martin Ziegler

Sign in / Sign up

Export Citation Format

Share Document