Transport Protocol with Acknowledgement-Assisted Storage Management for Intermittently Connected Wireless Sensor Networks

Author(s):  
Ying Li ◽  
Radim Bartos ◽  
James Swan
Author(s):  
Teemu Laukkarinen ◽  
Lasse Määttä ◽  
Jukka Suhonen ◽  
Timo D. Hämäläinen ◽  
Marko Hännikäinen

Resource constrained Wireless Sensor Networks (WSNs) require an automated firmware updating protocol for adding new features or error fixes. Reprogramming nodes manually is often impractical or even impossible. Current update protocols require a large external memory or external WSN transport protocol. This paper presents the design, implementation, and experiments of a Program Image Dissemination Protocol (PIDP) for autonomous WSNs. It is reliable, lightweight and it supports multi-hopping. PIDP does not require external memory, is independent of the WSN implementation, transfers firmware, and reprograms the whole program image. It was implemented on a node platform with an 8-bit microcontroller and a 2.4 GHz radio. Implementation requires 22 bytes of data memory and less than 7 kilobytes of program memory. PIDP updates 178 nodes within 5 hours. One update consumes under 1‰ of the energy of two AA batteries.


2017 ◽  
Vol 13 (7) ◽  
pp. 155014771771738 ◽  
Author(s):  
Min Wook Kang ◽  
Yun Won Chung

In delay-tolerant wireless sensor networks, messages for sensor data are delivered using opportunistic contacts between intermittently connected nodes. Since there is no stable end-to-end routing path like the Internet and mobile nodes operate on battery, an energy-efficient routing protocol is needed. In this article, we consider the probabilistic routing protocol using history of encounters and transitivity protocol as the base protocol. Then, we propose an energy-aware routing protocol in intermittently connected delay-tolerant wireless sensor networks, where messages are forwarded based on the node’s remaining battery, delivery predictability, and type of nodes. The performance of the proposed protocol is compared with that of probabilistic routing protocol using history of encounters and transitivity and probabilistic routing protocol using history of encounters and transitivity with periodic sleep in detail, from the aspects of delivery ratio, overhead ratio, delivery latency, and ratio of alive nodes. Simulation results show that the proposed protocol has better delivery probability, overhead ratio, and ratio of alive nodes, in most of the considered parameter settings, in spite of a small increase in delivery latency.


Sign in / Sign up

Export Citation Format

Share Document