Multi-Level Structured Image Coding on High-Dimensional Image Representation

Author(s):  
Li-Jia Li ◽  
Jun Zhu ◽  
Hao Su ◽  
Eric P. Xing ◽  
Li Fei-Fei
2021 ◽  
Vol 1 (6) ◽  
Author(s):  
Luis Munoz‐Erazo ◽  
Alfonso J. Schmidt ◽  
Kylie M. Price

2007 ◽  
Vol 4 (1) ◽  
pp. 107-111 ◽  
Author(s):  
Maciel Zortea ◽  
Victor Haertel ◽  
Robin Clarke

2021 ◽  
Author(s):  
Feiyang Ren ◽  
Yi Han ◽  
Shaohan Wang ◽  
He Jiang

Abstract A novel marine transportation network based on high-dimensional AIS data with a multi-level clustering algorithm is proposed to discover important waypoints in trajectories based on selected navigation features. This network contains two parts: the calculation of major nodes with CLIQUE and BIRCH clustering methods and navigation network construction with edge construction theory. Unlike the state-of-art work for navigation clustering with only ship coordinate, the proposed method contains more high-dimensional features such as drafting, weather, and fuel consumption. By comparing the historical AIS data, more than 220,133 lines of data in 30 days were used to extract 440 major nodal points in less than 4 minutes with ordinary PC specs (i5 processer). The proposed method can be performed on more dimensional data for better ship path planning or even national economic analysis. Current work has shown good performance on complex ship trajectories distinction and great potential for future shipping transportation market analytical predictions.


Author(s):  
Juan Gutiérrez ◽  
Gabriel Gómez-Perez ◽  
Jesús Malo ◽  
Gustavo Camps-Valls

Support vector machine (SVM) image coding relies on the ability of SVMs for function approximation. The size and the profile of the e-insensitivity zone of the support vector regression (SVR) at some specific image representation determines (a) the amount of selected support vectors (the compression ratio), and (b) the nature of the introduced error (the compression distortion). However, the selection of an appropriate image representation is a key issue for a meaningful design of the e-insensitivity profile. For example, in image coding applications, taking human perception into account is of paramount relevance to obtain a good rate-distortion performance. However, depending on the accuracy of the considered perception model, certain image representations are not suitable for SVR training. In this chapter, we analyze the general procedure to take human vision models into account in SVR-based image coding. Specifically, we derive the condition for image representation selection and the associated e-insensitivity profiles.


Sign in / Sign up

Export Citation Format

Share Document