Computational Systems Biology Approaches for Deciphering Traditional Chinese Medicine

2013 ◽  
pp. 337-368
Author(s):  
Shao Li ◽  
Le Lu
Cancers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 35
Author(s):  
Sahar Aghakhani ◽  
Naouel Zerrouk ◽  
Anna Niarakis

Fibroblasts, the most abundant cells in the connective tissue, are key modulators of the extracellular matrix (ECM) composition. These spindle-shaped cells are capable of synthesizing various extracellular matrix proteins and collagen. They also provide the structural framework (stroma) for tissues and play a pivotal role in the wound healing process. While they are maintainers of the ECM turnover and regulate several physiological processes, they can also undergo transformations responding to certain stimuli and display aggressive phenotypes that contribute to disease pathophysiology. In this review, we focus on the metabolic pathways of glucose and highlight metabolic reprogramming as a critical event that contributes to the transition of fibroblasts from quiescent to activated and aggressive cells. We also cover the emerging evidence that allows us to draw parallels between fibroblasts in autoimmune disorders and more specifically in rheumatoid arthritis and cancer. We link the metabolic changes of fibroblasts to the toxic environment created by the disease condition and discuss how targeting of metabolic reprogramming could be employed in the treatment of such diseases. Lastly, we discuss Systems Biology approaches, and more specifically, computational modeling, as a means to elucidate pathogenetic mechanisms and accelerate the identification of novel therapeutic targets.


2011 ◽  
Vol 39 (5) ◽  
pp. 1348-1352 ◽  
Author(s):  
Xuan Liu ◽  
De-An Guo

Systems biology is considered to be the possible technology that could bring breakthroughs in the study of TCM (traditional Chinese medicine). Proteomics, as one of the major components of systems biology, has been used in the mechanistic study of TCM, providing some interesting results. In the present paper, we review the current application of proteomics in the mechanistic study of TCM. Proteomics technologies and strategies that might be used in the future to improve study of TCM are also discussed.


2012 ◽  
Vol 40 (06) ◽  
pp. 1109-1122 ◽  
Author(s):  
Xijun Wang ◽  
Aihua Zhang ◽  
Hui Sun ◽  
Ping Wang

Traditional Chinese medicine (TCM), an alternative medicine, focuses on the treatment of human disease via the integrity of the close relationship between body and syndrome analysis. It remains a form of primary care in most Asian countries and its characteristics showcase the great advantages of personalized medicine. Although this approach to disease diagnosis, prognosis and treatment has served the medical establishment well for thousands of years, it has serious shortcomings in the era of modern medicine that stem from its reliance on reductionist principles of experimentation and analysis. In this way, systems biology offers the potential to personalize medicine, facilitating the provision of the right care to the right patient at the right time. We expect that systems biology will have a major impact on future personalized therapeutic approaches which herald the future of medicine. Here we summarize current trends and critically review the potential limitations and future prospects of such treatments. Some characteristic examples are presented to highlight the application of this groundbreaking platform to personalized TCM as well as some of the necessary milestones for moving systems biology of a state-of-the-art nature into mainstream health care.


Author(s):  
Florencio Pazos ◽  
David Guijas ◽  
Manuel J. Gomez ◽  
Almudena Trigo ◽  
Victor de Lorenzo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document