Ecological Interactions in Patchy Environments: From Patch-Occupancy Models to Cellular Automata

Author(s):  
Hal Caswell ◽  
Ron J. Etter
1998 ◽  
Vol 194 (1) ◽  
pp. 79-90 ◽  
Author(s):  
Juan E. Keymer ◽  
Pablo A. Marquet ◽  
Alan R. Johnson

2013 ◽  
Vol 70 (10) ◽  
pp. 1429-1437 ◽  
Author(s):  
Timothy Jensen ◽  
Jason C. Vokoun

We used multiseason, multistate patch occupancy models to investigate habitat use of a regionally rare minnow (bridle shiner, Notropis bifrenatus) within a difficult-to-sample, swampy stream system by defining occupancy states as coarse abundance categories (i.e., none, some, many). Habitat patches were repeatedly subsampled during three sampling periods spanning June to August 2011 using a nonstandard purse-and-lift method with a seine net, as poorly defined shorelines, unconsolidated substrate, and emergent vegetation limited beaching and restricted possible sampling locations. Detection probabilities increased from June to August, likely due to increasing catch per effort as age 0 became vulnerable to the gear, supported by the probability of detection being greater when the species was at high abundance, given occupancy. The probability of a habitat patch being occupied increased with the percent of macrophyte cover and decreased with increasing distance from another occupied patch. Decreasing mean depth showed a weak relationship to high abundance, given a patch was occupied. In summary, the multistate occupancy analytical approach was highly informative for developing quantitative habitat relationships and was seen as an effective framework for evaluating habitat use of aquatic organisms that inhabit environments inherently difficult to sample for which imperfect detection and sampling efficiency are of concern.


The Condor ◽  
2014 ◽  
Vol 116 (3) ◽  
pp. 316-324
Author(s):  
Joel H. Reynolds ◽  
Heather M. Renner

2021 ◽  
Author(s):  
Thomas Rawson ◽  
Frances M. Colles ◽  
J. Christopher D. Terry ◽  
Michael B. Bonsall

ABSTRACTA long-term study of Campylobacter sequence types was used to investigate the competitive framework of the Campylobacter metacommunity, and understand how multiple sequence types simultaneously co-occur in a flock of chickens. A combination of matrix and patch-occupancy models were used to estimate parameters describing the competition, transmission, and mortality of each sequence type. It was found that Campylobacter sequence types form a strong hierarchical framework within a flock of chickens, and occupied a broad spectrum of transmission-mortality trade-offs. Upon further investigation of how biodiversity is thus maintained within the flock, it was found that the demographic capabilities of Campylobacter, such as mortality and transmission, could not explain the broad biodiversity of sequence types seen, suggesting that external factors such as host-bird health and seasonality are important elements in maintaining biodiversity of Campylobacter sequence types.


2012 ◽  
Vol 2 (2) ◽  
pp. 150-155 ◽  
Author(s):  
Daniel Grünbaum

Most ecological interactions occur in environments that are spatially and temporally heterogeneous—‘patchy’—across a wide range of scales. In contrast, most theoretical models of ecological interactions, especially large-scale models applied to societal issues such as climate change, resource management and human health, are based on ‘mean field’ approaches in which the underlying patchiness of interacting consumers and resources is intentionally averaged out. Mean field ecological models typically have the advantages of tractability, few parameters and clear interpretation; more technically complex spatially explicit models, which resolve ecological patchiness at some (or all relevant) scales, generally lack these advantages. This report presents a heuristic analysis that incorporates important elements of consumer–resource patchiness with minimal technical complexity. The analysis uses scaling arguments to establish conditions under which key mechanisms—movement, reproduction and consumption—strongly affect consumer–resource interactions in patchy environments. By very general arguments, the relative magnitudes of these three mechanisms are quantified by three non-dimensional ecological indices: the Frost, Strathmann and Lessard numbers. Qualitative analysis based on these ecological indices provides a basis for conjectures concerning the expected characteristics of organisms, species interactions and ecosystems in patchy environments.


2021 ◽  
Vol 93 (3) ◽  
pp. 365-385
Author(s):  
Kamila Franz ◽  
Jerzy Romanowski ◽  
Karin Johst ◽  
Volker Grimm

Because of the scale and speed of species extinctions conservationists require methods that facilitate decision making. Therefore, a wide range of habitat and population viability analysis (PVA) software has been developed. Given the diversity of available programs it is currently challenging to decide which program is the most appropriate for a particular problem and what has to be considered when interpreting and comparing results from different approaches. Previous comparisons of PVA software addressed more generic questions such as data requirements, assumptions and predictive accuracy. In contract, we focus on a more applied problem that is still unresolved: how do simple habitat models and PVA software packages affect the ranking of alternative management scenarios? We addressed this problem by comparing different packages (LARCH, META-X, VORTEX and RAMAS GIS). As a test case, we studied the impact of alternative landscape development scenarios (river regulation, grassland restoration, reforestation and renaturalisation) for the Vistula valley, Poland, on the natterjack toad (Bufo calamita). In this context we also aimed to assess whether the use of at least two different PVA packages can enable users to better understand the differences in model predictions, which would imply a greater awareness and critical use of the packages. Our model selection represents different approaches to population viability analysis, including habitat, local population and stochastic patch occupancy models. The models can be evaluated in regard to the complexity of parameters and to the way the landscape is handled. We used RAMAS GIS to create a habitat model (RAMASh) and a detailed spatially explicit stochastic metapopulation model (RAMASp) which combined served as a complete “virtual” dataset for parameterisation of other programs. As an example of a stochastic patch occupancy model, we selected the META-X software. For a more independent comparison we added VORTEX – another package that includes explicit population dynamics, similar to RAMAS. Additionally, we included the habitat model LARCH because this type of model is often used by policy makers. We compared the metapopulation structure produced by RAMASh and LARCH. Scenario ranking according to the predicted carrying capacity in both programs was exactly the same, because the quantitative results for each scenario were almost identical in both programs. However, the metapopulation structure showed big differences between the programs, especially in the number of small populations. The analyses of results of different PVA programs (RAMASp, VORTEX and META-X) showed that absolute values of viability measures partly differed among these programs. Slight differences in population growth rate in RAMASp and VORTEX were amplified by stochasticity and resulted in visibly lower values of final abundance in VORTEX than in RAMASp. Also the absolute values of intrinsic mean time to extinction showed some discrepancies in VORTEX and META-X. These results are in agreement with findings of previous PVA comparisons, which emphasizes that absolute values of viability measures produced by any single model should be treated with caution. Nevertheless, despite these differences the rankings of the scenarios were the same in all three programs. However the order of the scenarios was different than in habitat models. In addition, these rankings were robust to the choice of viability measure. Taken together, these results emphasize that scenario ranking delivered by PVA software is robust and thus very useful for conservation management. Furthermore, we recommend using at least two PVA software packages in parallel, as this forces user to scrutinize the simplifying assumptions of the underlying models and of the viability metrics used.


Sign in / Sign up

Export Citation Format

Share Document