Author(s):  
Takaaki Shimura

AbstractThe Mellin-Stieltjes convolution and related decomposition of distributions in M(α) (the class of distributions μ on (0, ∞) with slowly varying αth truncated moments ) are investigated. Maller shows that if X and Y are independent non-negative random variables with distributions μ and v, respectively, and both μ and v are in D2, the domain attraction of Gaussian distribution, then the distribution of the product XY (that is, the Mellin-Stieltjes convolution μ ^ v of μ and v) also belongs to it. He conjectures that, conversely, if μ ∘ v belongs to D2, then both μ and v are in it. It is shown that this conjecture is not true: there exist distributions μ ∈ D2 and v μ ∈ D2 such that μ ^ v belongs to D2. Some subclasses of D2 are given with the property that if μ ^ v belongs to it, then both μ and v are in D2.


2019 ◽  
Author(s):  
Hiroki Takizawa ◽  
Junichi Iwakiri ◽  
Kiyoshi Asai

The analysis of secondary structures is essential to understanding the function of RNAs. Because RNA molecules thermally fluctuate, it is necessary to analyze the probability distribution of secondary structures. Existing methods, however, are not applicable to long RNAs owing to their high computational complexity. Additionally, previous research has suffered from two numerical difficulties: overflow and significant numerical error. In this research, we reduced the computational complexity in calculating the landscape of the probability distribution of secondary structures by introducing a maximum-span constraint. In addition, we resolved numerical computation problems through two techniques: extended logsumexp and accuracy-guaranteed numerical computation. We analyzed the stability of the secondary structures of 16S ribosomal RNAs at various temperatures without overflow. The results obtained are consistent with in vivo assay results reported in previous research. Furthermore, we quantitatively assessed numerical stability using our method. These results demonstrate that the proposed method is applicable to long RNAs. Source code is available on https://github.com/eukaryo/rintc.


Sign in / Sign up

Export Citation Format

Share Document