From Finite Sets to Feynman Diagrams

Author(s):  
John C. Baez ◽  
James Dolan
Keyword(s):  
2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Neelima Agarwal ◽  
Lorenzo Magnea ◽  
Sourav Pal ◽  
Anurag Tripathi

Abstract Correlators of Wilson-line operators in non-abelian gauge theories are known to exponentiate, and their logarithms can be organised in terms of collections of Feynman diagrams called webs. In [1] we introduced the concept of Cweb, or correlator web, which is a set of skeleton diagrams built with connected gluon correlators, and we computed the mixing matrices for all Cwebs connecting four or five Wilson lines at four loops. Here we complete the evaluation of four-loop mixing matrices, presenting the results for all Cwebs connecting two and three Wilson lines. We observe that the conjuctured column sum rule is obeyed by all the mixing matrices that appear at four-loops. We also show how low-dimensional mixing matrices can be uniquely determined from their known combinatorial properties, and provide some all-order results for selected classes of mixing matrices. Our results complete the required colour building blocks for the calculation of the soft anomalous dimension matrix at four-loop order.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
James Drummond ◽  
Jack Foster ◽  
Ömer Gürdoğan ◽  
Chrysostomos Kalousios

Abstract We address the appearance of algebraic singularities in the symbol alphabet of scattering amplitudes in the context of planar $$ \mathcal{N} $$ N = 4 super Yang-Mills theory. We argue that connections between cluster algebras and tropical geometry provide a natural language for postulating a finite alphabet for scattering amplitudes beyond six and seven points where the corresponding Grassmannian cluster algebras are finite. As well as generating natural finite sets of letters, the tropical fans we discuss provide letters containing square roots. Remarkably, the minimal fan we consider provides all the square root letters recently discovered in an explicit two-loop eight-point NMHV calculation.


1980 ◽  
Vol 10 (4) ◽  
pp. 8-12 ◽  
Author(s):  
B. L. McAllister
Keyword(s):  

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Ryuichiro Kitano ◽  
Hiromasa Takaura ◽  
Shoji Hashimoto

Abstract We perform a numerical computation of the anomalous magnetic moment (g − 2) of the electron in QED by using the stochastic perturbation theory. Formulating QED on the lattice, we develop a method to calculate the coefficients of the perturbative series of g − 2 without the use of the Feynman diagrams. We demonstrate the feasibility of the method by performing a computation up to the α3 order and compare with the known results. This program provides us with a totally independent check of the results obtained by the Feynman diagrams and will be useful for the estimations of not-yet-calculated higher order values. This work provides an example of the application of the numerical stochastic perturbation theory to physical quantities, for which the external states have to be taken on-shell.


Author(s):  
Julio F. Acosta ◽  
Victor H. Andaluz ◽  
Mauricio X. Naranjo ◽  
Jose I. Molina ◽  
Alex Santana G. ◽  
...  

2019 ◽  
Vol 94 (6) ◽  
pp. 1109-1121
Author(s):  
László Horváth

AbstractIn this paper some new refinements of the discrete Jensen’s inequality are obtained in real vector spaces. The idea comes from some former refinements determined by cyclic permutations. We essentially generalize and extend these results by using permutations of finite sets and bijections of the set of positive numbers. We get refinements of the discrete Jensen’s inequality for infinite convex combinations in Banach spaces. Similar results are rare. Finally, some applications are given on different topics.


2013 ◽  
Vol 90 (6) ◽  
pp. 1278-1291 ◽  
Author(s):  
Alberto Policriti ◽  
Alexandru I. Tomescu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document