Neutron Spectroscopy of Vapour Deposited Amorphous Ice

Author(s):  
A. I. Kolesnikov ◽  
J.-C. Li
1999 ◽  
Vol 263-264 ◽  
pp. 650-652 ◽  
Author(s):  
A.I Kolesnikov ◽  
J.C Li ◽  
N.C Ahmad ◽  
C.-K Loong ◽  
J Nipko ◽  
...  

Author(s):  
Uwe Lücken ◽  
Joachim Jäger

TEM imaging of frozen-hydrated lipid vesicles has been done by several groups Thermotrophic and lyotrophic polymorphism has been reported. By using image processing, computer simulation and tilt experiments, we tried to learn about the influence of freezing-stress and defocus artifacts on the lipid polymorphism and fine structure of the bilayer profile. We show integrated membrane proteins do modulate the bilayer structure and the morphology of the vesicles.Phase transitions of DMPC vesicles were visualized after freezing under equilibrium conditions at different temperatures in a controlled-environment vitrification system. Below the main phase transition temperature of 24°C (Fig. 1), vesicles show a facetted appearance due to the quasicrystalline areas. A gradual increase in temperature leads to melting processes with different morphology in the bilayer profile. Far above the phase transition temperature the bilayer profile is still present. In the band-pass-filtered images (Fig. 2) no significant change in the width of the bilayer profile is visible.


Author(s):  
John G. Sheehan

Improvements in particulate coatings for printable paper require understanding mechanisms of colloidal interactions in paper coating suspensions. One way to deduce colloidal interactions is to mage particle spacings and orientations at high resolution with cryo-SEM. Recent improvements in cryo-SEM technique have increased resolution enough to image particles in coating paints,vhich are sometimes smaller than 100 nm. In this report, a metal-coating chamber is described for preparation of colloidal suspensions for cryo-SEM at resolution down to 20 nm. It was found that etching is not necessary to achieve this resolution.A 120 K cryo-SEM sample will remain in an SEM for hours without noticeable condensation of imorphous ice. This is due to the high vapor pressure of vapor-condensed amorphous ice, measured by Kouchi. However, clean vacuum is required to coat samples with the thinnest possible continuous metal films which are required for high magnification SEM. Vapor contaminants, especially hrydrocarbons, are known to interfere with thin-film nucleation and growth so that more metal is needed to form continuous films, and resolution is decreased. That is why the metal-coating chamber in fig. 1 is designed for the cleanest possible vacuum. Feedthroughs for the manipulator md the shutter, which are operated during metal coating, are sealed with leak-proof stainless-steel Dellows. The transfer rod slides through a baseplate feedthrough that is double o-ring sealed.


2020 ◽  
Author(s):  
Tong Zhou ◽  
◽  
David Rose ◽  
Jeffrey Miles ◽  
Jason Gendur ◽  
...  

2021 ◽  
Vol 3 (2) ◽  
pp. 765-776
Author(s):  
Anne A. Y. Guilbert ◽  
Yang Bai ◽  
Catherine M. Aitchison ◽  
Reiner Sebastian Sprick ◽  
Mohamed Zbiri

2020 ◽  
Vol 760 ◽  
pp. 138028
Author(s):  
Ayane Kubo ◽  
Junya Nishizawa ◽  
Tomoko Ikeda-Fukazawa

Sign in / Sign up

Export Citation Format

Share Document