Alaska SAR Facility: The US Science Center for Sea Ice SAR Data

Author(s):  
F. Carsey ◽  
R. Harding ◽  
C. Wales
Keyword(s):  
Sea Ice ◽  
The Us ◽  
1999 ◽  
Vol 45 (150) ◽  
pp. 370-383 ◽  
Author(s):  
Kim Morris ◽  
Shusun Li ◽  
Martin Jeffries

Abstract Synthetic aperture radar- (SAR-)derived ice-motion vectors and SAR interferometry were used to study the sea-ice conditions in the region between the coast and 75° N (~ 560 km) in the East Siberian Sea in the vicinity of the Kolyma River. ERS-1 SAR data were acquired between 24 December 1993 and 30 March 1994 during the 3 day repeat Ice Phase of the satellite. The time series of the ice-motion vector fields revealed rapid (3 day) changes in the direction and displacement of the pack ice. Longer-term (≥ 1 month) trends also emerged which were related to changes in large-scale atmospheric circulation. On the basis of this time series, three sea-ice zones were identified: the near-shore, stationary-ice zone; a transitional-ice zone;and the pack-ice zone. Three 3 day interval and one 9 day interval interferometric sets (amplitude, correlation and phase diagrams) were generated for the end of December, the begining of February and mid-March. They revealed that the stationary-ice zone adjacent to the coast is in constant motion, primarily by lateral displacement, bending, tilting and rotation induced by atmospheric/oceanic forcing. The interferogram patterns change through time as the sea ice becomes thicker and a network of cracks becomes established in the ice cover. It was found that the major features in the interferograms were spatially correlated with sea-ice deformation features (cracks and ridges) and major discontinuities in ice thickness.


Author(s):  
Ronald Kwok ◽  
Glenn Cunninghan ◽  
Benjamin Holt
Keyword(s):  
Sea Ice ◽  

Author(s):  
C. Bertola ◽  
J. Falkingham ◽  
F. Fetterer
Keyword(s):  
Sea Ice ◽  

2020 ◽  
Vol 12 (9) ◽  
pp. 1507 ◽  
Author(s):  
Franz J. Meyer ◽  
Olaniyi A. Ajadi ◽  
Edward J. Hoppe

The traveling public judges the quality of a road mostly by its roughness and/or ride quality. Hence, mapping, monitoring, and maintaining adequate pavement smoothness is of high importance to State Departments of Transportation in the US. Current methods rely mostly on in situ measurements and are, therefore, time consuming and costly when applied at the network scale. This paper studies the applicability of satellite radar remote sensing data, specifically, high-resolution Synthetic Aperture Radar (SAR) data acquired at X-band, to the network-wide mapping of pavement roughness of roads in the US. Based on a comparison of high-resolution X-band Cosmo-SkyMed images with road roughness data in the form of International Roughness Index (IRI) measurements, we found that X-band radar brightness generally increases when pavement roughness worsens. Based on these findings, we developed and inverted a model to distinguish well maintained road segments from segments in need of repair. Over test sites in Augusta County, VA, we found that our classification scheme reaches an overall accuracy of 92.6%. This study illustrates the capacity of X-band SAR for pavement roughness mapping and suggests that incorporating SAR into DOT operations could be beneficial.


Sign in / Sign up

Export Citation Format

Share Document