Conformational Changes in Protein Antigens Induced by Specific Antibodies: Sperm-whale Myoglobin

Author(s):  
M. J. Crumpton
1984 ◽  
Vol 160 (3) ◽  
pp. 659-678 ◽  
Author(s):  
H Kawamura ◽  
Y Kohno ◽  
M Busch ◽  
F R Gurd ◽  
J A Berzofsky

A rabbit antiidiotypic antiserum raised against an A.SW IgG1K monoclonal anti-sperm whale myoglobin (Mb) antibody, HAL19, and extensively absorbed with normal mouse immunoglobulin and MOPC 21 (IgG1K), was found to detect a common or major anti-Mb idiotype expressed by some but not all anti-Mb monoclonal antibodies, regardless of immunoglobulin G (IgG) subclass, and by 40-50% of the anti-Mb antibodies in immune serum from five high responder strains of mice representing five different Igh allotypes. It did not inhibit antibodies to three unrelated protein antigens. The fraction of antibodies expressing this idiotype, denoted IdHAL19, was regulated by H-2-linked genes that correlated exactly in four independent haplotypes and an F1 with the known Mb immune response (Ir) genes and may be identical to these. Whereas less than 50% of antibodies from high responder mice were inhibitable by anti-IdHAL19, greater than 80% of antibodies from low responder mice, tested at comparable final antibody concentration, were inhibitable. This result was true for both low responder haplotypes, H-2b (B10) and H-2k (B10.BR). The idiotype was found to be present on antibodies that bound to native Mb but not fragments 1-55 or 132-153 of Mb or a denatured form, S-methyl Mb. This specificity for native Mb paralleled that of the monoclonal idiotype HAL19 itself. Therefore, the production of antibodies specific for native in contrast to denatured Mb was studied in H-2-congenic high and low responder strains. Strikingly, low responders produced antibodies that reacted almost exclusively with the native conformation, whereas a larger proportion of antibodies from high responder mice also reacted with the denatured form, S-methyl Mb. Bypassing of the Ir gene defect by immunization with Mb attached to a carrier, F gamma G, resulted in low responder antisera resembling higher responder sera in both idiotype expression and conformational specificity. The simplest explanation of these results is that H-2-linked Ir genes control antibody fine specificity, which is reflected in the idiotypes of the variable regions expressed. We suggest that low responder mice produce a more limited repertoire of antibodies consisting primarily of IdHAL19-positive antibodies specific for the native conformation of Mb. High responder mice produce a greater diversity of antibodies to Mb, so that the IdHAL19-positive, conformation-specific population represents a smaller proportion of the total. Similarly, the use of carrier-specific helper T cells in low responder mice results in a greater diversity of antibodies, which dilutes out the IdHAL19 subset.(ABSTRACT TRUNCATED AT 400 WORDS)


1990 ◽  
Vol 265 (20) ◽  
pp. 11788-11795
Author(s):  
K D Egeberg ◽  
B A Springer ◽  
S G Sligar ◽  
T E Carver ◽  
R J Rohlfs ◽  
...  

Myoglobin from the common seal ( Phoca vitulina ) when crystallized from ammonium sulphate forms monoclinic crystals with space group the unit cell, a = 57·9Å, b = 29·6Å, c = 106·4Å, β = 102°15', contains four molecules. The method of isomorphous replacement has been used in an investigation of the centrosymmetric b -axis projection in which it has been possible to determine signs for nearly all the h0l reflexions having spacings greater than 4Å. Three independent heavy-atom derivatives were employed and the signs so determined have been used to compute a map of the electron density projected on the (010) plane. This projection has been interpreted in terms of the molecule of sperm-whale myoglobin, as deduced by Bodo, Dintzis, Kendrew & Wyckoff (1959) from a three-dimensional Fourier synthesis to 6Å resolution. The results of the interpretation show that the two myoglobin molecules are very similar in form (tertiary structure) in spite of the differences in their amino-acid composition. The relative orientation of the two unit cells with respect to the myoglobin molecule is given and a comparison is made of the positions of the heavy atoms in each molecule.


Nature ◽  
1961 ◽  
Vol 190 (4777) ◽  
pp. 663-665 ◽  
Author(s):  
A. B. EDMUNDSON ◽  
C. H. W. HIRS

The electron density distribution in the unit cell is calculated at intervals of approximately 2Å and plotted in a series of sections parallel to (010). The contour maps show that haemoglobin consists of four subunits in a tetrahedral array. The subunits are identical in pairs in accordance with the twofold symmetry of the molecule. The two pairs are very similar in structure, and the members of each pair closely resemble the molecule of sperm-whale myoglobin. The four haem groups lie in separate pockets at the surface of the molecule. The positions of the iron atoms are confirmed by comparison of observed and calculated anomalous scattering effects, which also serve to determine the absolute configuration of the molecule. The four subunits found by X-ray analysis correspond to the four polypeptide chains into which haemoglobin can be divided by chemical methods. In horse haemoglobin the amino acid sequence within these chains is still partly unknown, but in human haemoglobin it has already been determined. Comparison of this sequence with the tertiary structure of the chains as now revealed in horse haemoglobin and with the atomic model of sperm-whale myoglobin recently obtained by Kendrew and his collaborators shows many interesting relations. Prolines appear to come where the chains turn corners or where their configuration is known to be non-helical. On the other hand, the chains also have corners which contain no proline. Certain residues appear to be structurally vital, because they appear in identical positions in myoglobin and in the two chains of haemoglobin, while in other parts of the molecule a wide variety of different side-chains appears to be allowed.


Sign in / Sign up

Export Citation Format

Share Document