Spatial and Temporal Variability Within the Southern Ocean

Author(s):  
A. L. Gordon
1996 ◽  
Vol 101 (C4) ◽  
pp. 8759-8773 ◽  
Author(s):  
Sarah T. Gille ◽  
Kathryn A. Kelly

2021 ◽  
Author(s):  
◽  
Francisca A.H. Vermeulen

<p>Polar marine regions are dominated by sea ice, where large gradients in temperature, salinity, nutrients and light occur. Despite this, a rich community exists within the sea ice, consisting of prokaryotic organisms, several algal groups and small zooplankton. Prokaryotes are present in the largest abundance in the sea ice; however, diatoms dominate in biomass. Diatoms are the main primary producers within the ice and they form a vital food source for many organisms. However, factors determining species composition, abundance, spatial and temporal variability and nutrient requirement are relatively poorly understood. In order to increase understanding of these processes, an integrated approach was used in this thesis to provide an insight into the potential changes to the ecology of the Southern Ocean in relation to predicted climate change. In this thesis, I studied ice algal community structure, diversity and nutrient requirements at several locations in the sea ice of the Ross Sea, Antarctica. Though many previous studies have focussed on these organisms, this is the first study to I) integrate recent and historical data collected over 30 years and to compare spatial and temporal differences in sea ice communities, II) use the near real time nutrient induced fluorescence transient (NIFT) method to study nutrient limitation in sea ice and further develop this method for use with the imaging pulse amplitude modulator (I-PAM), III) show that Antarctic diatoms may be more susceptible to silica limitation than previously thought, despite the fact that the silica concentration in the Southern Ocean are relatively high. Results from these studies provide important new information on community structure and how it is influenced by and responds to the environment ...</p>


2017 ◽  
Vol 47 (5) ◽  
pp. 1151-1168 ◽  
Author(s):  
Christopher C. Chapman

AbstractThe frontal structure of the Southern Ocean is investigated using the Wavelet/Higher Order Statistics Enhancement (WHOSE) frontal detection method, introduced in Chapman’s work. This methodology is applied to 21 yr of daily gridded absolute dynamic topography (ADT) data to obtain daily maps of the locations of the fronts. By forming frontal occurrence frequency maps and then approximating these occurrence maps by a superposition of simple functions, the time-mean locations of the fronts, as well as a measure of their capacity to meander, are obtained and related to the frontal locations found by previous studies. The spatial and temporal variability of the frontal structure is then considered. The number of fronts is found to be highly variable throughout the Southern Ocean, increasing (splitting) downstream of large bathymetric features and decreasing (merging) in regions where the fronts are tightly controlled by the underlying topography. These splitting/merging events are related to changes in the underlying frontal structure whereby regions of high frontal occurrence cross or spread over streamfunction contours. In contrast to the number of fronts, frontal meandering remains relatively constant throughout the Southern Ocean. Little to no migration of the fronts over the 1993–2014 time period is found, and there is only weak sensitivity of frontal positions to atmospheric forcing related to the southern annular mode or the El Niño–Southern Oscillation. Finally, the implications of these results for the study of cross-stream tracer transport are discussed.


2006 ◽  
Vol 84 (7) ◽  
pp. 1025-1037 ◽  
Author(s):  
Dexter Davis ◽  
Iain J. Staniland ◽  
Keith Reid

The spatial and temporal variability in the fish component of the diet of Antarctic fur seals (Arctocephalus gazella (Peters, 1875)) in the Atlantic sector of the Southern Ocean was examined using diet data from 10 sites in the region including a 13-year time series from South Georgia. The fish species composition in the diet at each site showed a strong relationship with the local marine habitat / topography. The absence of formerly harvested fish species indicates a lack of recovery of stocks of Notothenia rossii Richardson, 1844 at South Georgia and Champsocephalus gunnari Lönnberg, 1905 at the South Orkney Islands. At South Georgia, Protomyctophum choriodon Hulley, 1981, Lepidonotothen larseni (Lönnberg, 1905), and C. gunnari were the most important species in the diet between 1991 and 2004. Variability in the occurrence of C. gunnari was driven mainly by annual scale processes, particularly those that influence the availability of Antarctic krill (Euphausia superba (Dana, 1852)). The occurrence of the pelagic P. choriodon was primarily influenced by shorter-term water mass changes within the foraging range of the seals. The fish composition in the diet reflects differences in marine habitat / topography, as well as variability, at a range of time scales that reflect environmental variability and harvesting.


2021 ◽  
Author(s):  
◽  
Francisca A.H. Vermeulen

<p>Polar marine regions are dominated by sea ice, where large gradients in temperature, salinity, nutrients and light occur. Despite this, a rich community exists within the sea ice, consisting of prokaryotic organisms, several algal groups and small zooplankton. Prokaryotes are present in the largest abundance in the sea ice; however, diatoms dominate in biomass. Diatoms are the main primary producers within the ice and they form a vital food source for many organisms. However, factors determining species composition, abundance, spatial and temporal variability and nutrient requirement are relatively poorly understood. In order to increase understanding of these processes, an integrated approach was used in this thesis to provide an insight into the potential changes to the ecology of the Southern Ocean in relation to predicted climate change. In this thesis, I studied ice algal community structure, diversity and nutrient requirements at several locations in the sea ice of the Ross Sea, Antarctica. Though many previous studies have focussed on these organisms, this is the first study to I) integrate recent and historical data collected over 30 years and to compare spatial and temporal differences in sea ice communities, II) use the near real time nutrient induced fluorescence transient (NIFT) method to study nutrient limitation in sea ice and further develop this method for use with the imaging pulse amplitude modulator (I-PAM), III) show that Antarctic diatoms may be more susceptible to silica limitation than previously thought, despite the fact that the silica concentration in the Southern Ocean are relatively high. Results from these studies provide important new information on community structure and how it is influenced by and responds to the environment ...</p>


Sign in / Sign up

Export Citation Format

Share Document