Theory of NMR in Superconductors with Paramagnetic Impurities in a Singlet State

Author(s):  
A. A. Kosov ◽  
S. L. Tsarevskii
Author(s):  
David W. Piston

Two-photon excitation fluorescence microscopy provides attractive advantages over confocal microscopy for three-dimensionally resolved fluorescence imaging. Two-photon excitation arises from the simultaneous absorption of two photons in a single quantitized event whose probability is proportional to the square of the instantaneous intensity. For example, two red photons can cause the transition to an excited electronic state normally reached by absorption in the ultraviolet. In our fluorescence experiments, the final excited state is the same singlet state that is populated during a conventional fluorescence experiment. Thus, the fluorophore exhibits the same emission properties (e.g. wavelength shifts, environmental sensitivity) used in typical biological microscopy studies. In practice, two-photon excitation is made possible by the very high local instantaneous intensity provided by a combination of diffraction-limited focusing of a single laser beam in the microscope and the temporal concentration of 100 femtosecond pulses generated by a mode-locked laser. Resultant peak excitation intensities are 106 times greater than the CW intensities used in confocal microscopy, but the pulse duty cycle of 10−5 maintains the average input power on the order of 10 mW, only slightly greater than the power normally used in confocal microscopy.


2002 ◽  
Vol 76 (1) ◽  
pp. 47 ◽  
Author(s):  
Joakim Andréasson ◽  
Gerdenis Kodis ◽  
Su Lin ◽  
Ana L. Moore ◽  
Thomas A. Moore ◽  
...  

2019 ◽  
Author(s):  
Ethan A. Hill ◽  
Norman Zhao ◽  
Alexander S. Filatov ◽  
John Anderson

We report four-coordinate nickel(II)-methyl complexes of tris-carbene borate ligands which adopt rare seesaw geometries. Experimental and computational results suggest the structural distortion from threefold symmetry results from a combination of electronic stabilization of the singlet state, strong field donors, and constrained angles from the chelating ligand.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3697
Author(s):  
Valeria Stagno ◽  
Chiara Genova ◽  
Nicole Zoratto ◽  
Gabriele Favero ◽  
Silvia Capuani

In this work, we investigated the potential of PVA-borax hydrogel for cleaning limestones and the dependence of the cleaning on the porosity of the rock and on the action time of the hydrogel treatment. Towards this goal, we used a nuclear magnetic resonance (NMR) spectrometer, developed for non-invasive and non-destructive applications on cultural heritage. T2-NMR parameters were quantified on different samples of Lecce stone and Travertine cut perpendicular (Pe) and parallel (Pa) to the bedding planes under different experimental conditions: untreated samples, treated with Paraloid B72 and cleaned with PVA-PEO-borax hydrogel applied for 4 min and 2 h. The T2 results suggest that the effectiveness of the cleaning strongly depended on the porosity of the stones. In Lecce stone, the hydrogel seemed to eliminate both the paramagnetic impurities (in equal measure with 4 min and 2 h treatment) and Paraloid B72. In Travertine Pe, characterized by a smaller pore size compared to Lecce stone, no significant effects were found regarding both the cleaning and the treatment with Paraloid B72. In Travertine Pa, characterized by a larger pore size than the other two samples, the hydrogel seemed to clean the paramagnetic agents (it worked better if applied for a longer time) but it did not appear to have any effect on Paraloid B72 removal.


2017 ◽  
Vol 122 (1) ◽  
pp. 130-139
Author(s):  
Jordan A. Greco ◽  
Nicole L. Wagner ◽  
Harry A. Frank ◽  
Robert R. Birge

Sign in / Sign up

Export Citation Format

Share Document