Sudden Transition to Turbulence

1980 ◽  
pp. 388-395 ◽  
Author(s):  
F. Schultz-Grunow
2019 ◽  
Vol XVI (2) ◽  
pp. 13-22
Author(s):  
Muhammad Ehtisham Siddiqui

Three-dimensional boundary-layer flow is well known for its abrupt and sharp transition from laminar to turbulent regime. The presented study is a first attempt to achieve the target of delaying the natural transition to turbulence. The behaviour of two different shaped and sized stationary disturbances (in the laboratory frame) on the rotating-disk boundary layer flow is investigated. These disturbances are placed at dimensionless radial location (Rf = 340) which lies within the convectively unstable zone over a rotating-disk. Mean velocity profiles were measured using constant-temperature hot-wire anemometry. By careful analysis of experimental data, the instability of these disturbance wakes and its estimated orientation within the boundary-layer were investigated.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Christopher J. Camobreco ◽  
Alban Pothérat ◽  
Gregory J. Sheard

Author(s):  
A.P Willis ◽  
J Peixinho ◽  
R.R Kerswell ◽  
T Mullin

There have been many investigations of the stability of Hagen–Poiseuille flow in the 125 years since Osborne Reynolds' famous experiments on the transition to turbulence in a pipe, and yet the pipe problem remains the focus of attention of much research. Here, we discuss recent results from experimental and numerical investigations obtained in this new century. Progress has been made on three fundamental issues: the threshold amplitude of disturbances required to trigger a transition to turbulence from the laminar state; the threshold Reynolds number flow below which a disturbance decays from turbulence to the laminar state, with quantitative agreement between experimental and numerical results; and understanding the relevance of recently discovered families of unstable travelling wave solutions to transitional and turbulent pipe flow.


2020 ◽  
Vol 909 ◽  
Author(s):  
Lin Fu ◽  
Michael Karp ◽  
Sanjeeb T. Bose ◽  
Parviz Moin ◽  
Javier Urzay

Abstract


2021 ◽  
Vol 33 (7) ◽  
pp. 076112
Author(s):  
Dimitris Drikakis ◽  
Konstantinos Ritos ◽  
S. Michael Spottswood ◽  
Zachary B. Riley

Work ◽  
2021 ◽  
Vol 68 (1) ◽  
pp. 45-67
Author(s):  
Alessandro Naddeo ◽  
Rosaria Califano ◽  
Iolanda Fiorillo

BACKGROUND: The sanitary emergency due to COVID-19 virus obliged people to face up several changes in their everyday life becauseWorld Health Organisation (WHO) guidelines and countries' Health Systems imposed lockdown of activities and social distancing to flatten the infection curve. One of these rapid changes involved students and professors that had to turn the traditional "in presence" classes into online courses facing several problems for educational delivery. OBJECTIVES: This work aimed to investigate the factors that affected both teaching/learning effectiveness and general human comfort and wellbeing after the sudden transition from classrooms to eLearning platforms due to COVID-19 in Italy. METHODS: A workshop, involving students and experts of Human Factors and Ergonomics, has been performed to identify aspects/factors that could influence online learning. Then, from workshop output and literature studies, a survey composed of two questionnaires (one for students and one for teachers) has been developed and spread out among Italian universities students and professors. RESULTS: 700 people answered the questionnaires. Data have been analysed and discussed to define the most important changes due to the new eLearning approach. Absence of interactions with colleagues and the necessity to use several devices were some of the aspects coming out from questionnaires. CONCLUSIONS: The study shows an overview of factors influencing both teaching/learning effectiveness and general human comfort and wellbeing. Results could be considered as a basis for future investigation and optimization about the dependencies and correlations among identified factors and the characteristics of the products/interaction/environment during eLearning courses.


Sign in / Sign up

Export Citation Format

Share Document