scholarly journals Transition to turbulence in quasi-two-dimensional MHD flow driven by lateral walls

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Christopher J. Camobreco ◽  
Alban Pothérat ◽  
Gregory J. Sheard
1998 ◽  
Vol 356 ◽  
pp. 221-257 ◽  
Author(s):  
P. A. DAVIDSON

Arnol'd developed two distinct yet closely related approaches to the linear stability of Euler flows. One is widely used for two-dimensional flows and involves constructing a conserved functional whose first variation vanishes and whose second variation determines the linear (and nonlinear) stability of the motion. The second method is a refinement of Kelvin's energy principle which states that stable steady Euler flows represent extremums in energy under a virtual displacement of the vorticity field. The conserved-functional (or energy-Casimir) method has been extended by several authors to more complex flows, such as planar MHD flow. In this paper we generalize the Kelvin–Arnol'd energy method to two-dimensional inviscid flows subject to a body force of the form −ϕ∇f. Here ϕ is a materially conserved quantity and f an arbitrary function of position and of ϕ. This encompasses a broad class of conservative flows, such as natural-convection planar and poloidal MHD flow with the magnetic field trapped in the plane of the motion, flows driven by electrostatic forces, swirling recirculating flow, self-gravitating flows and poloidal MHD flow subject to an azimuthal magnetic field. We show that stable steady motions represent extremums in energy under a virtual displacement of ϕ and of the vorticity field. That is, d1E=0 at equilibrium and whenever d2E is positive or negative definite the flow is (linearly) stable. We also show that unstable normal modes must have a spatial structure which satisfies d2E=0. This provides a single stability test for a broad class of flows, and we describe a simple universal procedure for implementing this test. In passing, a new test for linear stability is developed. That is, we demonstrate that stability is ensured (for flows of the type considered here) whenever the Lagrangian of the flow is a maximum under a virtual displacement of the particle trajectories, the displacement being of the type normally associated with Hamilton's principle. A simple universal procedure for applying this test is also given. We apply our general stability criteria to a range of flows and recover some familiar results. We also extend these ideas to flows which are subject to more than one type of body force. For example, a new stability criterion is obtained (without the use of Casimirs) for natural convection in the presence of a magnetic field. Nonlinear stability is also considered. Specifically, we develop a nonlinear stability criterion for planar MHD flows which are subject to isomagnetic perturbations. This differs from previous criteria in that we are able to extend the linear criterion into the nonlinear regime. We also show how to extend the Kelvin–Arnol'd method to finite-amplitude perturbations.


One reason for carrying out the calculations of the previous paper was to provide material for an experimental study of the transition to turbulence in the wake behind a plate parallel to the stream. A second reason was to compare the results with certain results due to Filon, who has calculated both the List and second approximations to the velocity at a considerable distance from a fixed cylindrical obstacle in an unlimited stream whose velocity at infinity is constant.* He also uses the notions of the Oseen approximation; that is to say, he assumes that the departures from the undisturbed velocity are small, and neglects terms quadratic in these departures for the first approximations, etc .; but he does not assume that v is small and does not use the Prandtl equations. Thus the formulæ of paper 1, paragraph 2, should be limiting forms, for small v, of Filon's formulæ for a symmetrical wake. This is verified in paragraph 2 below; and the calculations in paper 1, paragraph 2, other than the attempt at a third approximation, may be regarded as a simplified form of Filon's calculations. The direct simplification of Filon's results gives the formulæ 2 (31) (p. 569), for the velocity at a sufficient distance downstream in any symmetrical wake provided that the motion is steady, whether v is small or not. these formulæ differ only in the last terms from the formulæ 2 (27) on p. 553 of paper 1, obtained from the Prandtl equations, and these terms are negligible, compared with the others, when v is small, (For the meaning of the symbols, see paragraph 1.3 of paper 1.) Thus the first asymptotic approximation is exactly the same here as in the previous paper ; in the second approximation the more accurate results of this paper contain extra terms, which it is shown on p. 567 arise entirely from the previous neglect of the pressure gradient in the direction of the stream.


AIAA Journal ◽  
1978 ◽  
Vol 16 (6) ◽  
pp. 587-591 ◽  
Author(s):  
Anthony Demetriades

1992 ◽  
Vol 238 ◽  
pp. 1-30 ◽  
Author(s):  
George Em Karniadakis ◽  
George S. Triantafyllou

The wakes of bluff objects and in particular of circular cylinders are known to undergo a ‘fast’ transition, from a laminar two-dimensional state at Reynolds number 200 to a turbulent state at Reynolds number 400. The process has been documented in several experimental investigations, but the underlying physical mechanisms have remained largely unknown so far. In this paper, the transition process is investigated numerically, through direct simulation of the Navier—Stokes equations at representative Reynolds numbers, up to 500. A high-order time-accurate, mixed spectral/spectral element technique is used. It is shown that the wake first becomes three-dimensional, as a result of a secondary instability of the two-dimensional vortex street. This secondary instability appears at a Reynolds number close to 200. For slightly supercritical Reynolds numbers, a harmonic state develops, in which the flow oscillates at its fundamental frequency (Strouhal number) around a spanwise modulated time-average flow. In the near wake the modulation wavelength of the time-average flow is half of the spanwise wavelength of the perturbation flow, consistently with linear instability theory. The vortex filaments have a spanwise wavy shape in the near wake, and form rib-like structures further downstream. At higher Reynolds numbers the three-dimensional flow oscillation undergoes a period-doubling bifurcation, in which the flow alternates between two different states. Phase-space analysis of the flow shows that the basic limit cycle has branched into two connected limit cycles. In physical space the period doubling appears as the shedding of two distinct types of vortex filaments.Further increases of the Reynolds number result in a cascade of period-doubling bifurcations, which create a chaotic state in the flow at a Reynolds number of about 500. The flow is characterized by broadband power spectra, and the appearance of intermittent phenomena. It is concluded that the wake undergoes transition to turbulence following the period-doubling route.


2009 ◽  
Vol 131 (12) ◽  
Author(s):  
Gopi Krishnan ◽  
Kamran Mohseni

In this paper the flow field of a rectangular synthetic jet driven by a piezoelectric membrane issuing into a quiescent environment is studied. The similarities exhibited by synthetic and continuous turbulent jets lead to the hypothesis that a rectangular synthetic jet within a limited region downstream of the orifice be modeled using similarity analysis just as a continuous planar jet. Accordingly, the jet is modeled using the classic two-dimensional solution to a continuous jet, where the virtual viscosity coefficient of the continuous turbulent jet is replaced with that measured for a synthetic jet. The virtual viscosity of the synthetic jet at a particular axial location is related to the spreading rate and velocity decay rate of the jet. Hot-wire anemometry is used to characterize the flow downstream of the orifice. The flow field of rectangular synthetic jets is thought to consist of four regions as distinguished by the centerline velocity decay. The regions are the developing, the quasi-two-dimensional, the transitional, and the axisymmetric regions. It is in the quasi-two-dimensional region that the planar model applies, and where indeed the jet exhibits self-similar behavior as distinguished by the collapse of the lateral time average velocity profiles when scaled. Furthermore, within this region the spanwise velocity profiles display a saddleback profile that is attributed to the secondary flow generated at the smaller edges of the rectangular orifice. The scaled spreading and decay rates are seen to increase with stroke ratio and be independent of Reynolds number. However, the geometry of the actuator is seen to additionally affect the external characteristics of the jet. The eddy viscosities of the synthetic jets under consideration are shown to be larger than equivalent continuous turbulent jets. This enhanced eddy viscosity is attributed to the additional mixing brought about by the introduction of the periodic vortical structures in synthetic jets and their ensuing break down and transition to turbulence. Further, a semi-empirical modeling approach is proposed, the final objective of which is to obtain a functional relationship between the parameters that describe the external flow field of the synthetic jet and the input operational parameters to the system.


1973 ◽  
Vol 95 (2) ◽  
pp. 229-235 ◽  
Author(s):  
J. P. Johnston

Stabilization of turbulent boundary layer type flows by the action of Coriolis forces engendered by system rotation is studied. Experiments on fully developed, two-dimensional flow in a long, straight channel that was rotated about an axis perpendicular to the plane of mean shear are reviewed to demonstrate the principal effects of stabilization. In particular, the delay of transition to turbulence on the stabilized side of the channel to high Reynolds number (u¯mh/ν) as the rotation number (|Ω|h/u¯m) is increased is demonstrated. A simple method which utilizes the eddy Reynolds number criterion of Bradshaw, is employed to show that rotation-induced suppression of transition may be predicted for the channel flow case. The applicability of the predictive method to boundary layer type flows is indicated.


Sign in / Sign up

Export Citation Format

Share Document