Some Results in the Analysis of Thin Shell Structures

Author(s):  
K.-J. Bathe ◽  
L. W. Ho
Keyword(s):  
Author(s):  
Haigui Fan ◽  
Wenguang Gu ◽  
Longhua Li ◽  
Peiqi Liu ◽  
Dapeng Hu

Buckling design of axially compressed cylindrical shells is still a challenging subject considering the high imperfection-sensitive characteristic in this kind of structure. With the development of various design methods, the energy barrier concept dealing with buckling of imperfection-sensitive cylindrical shells exhibits a promising prospect in recent years. In this study, buckling design of imperfection-sensitive cylindrical shells under axial compression based on the energy barrier approach is systematically investigated. The methodology about buckling design based on the energy barrier approach is described in detail first taking advantage of the cylindrical shells whose buckling loads have been extensively tested. Then, validation and discussion about this buckling design method have been carried out by the numerical and experimental analyses on the cylindrical shells with different geometrical and boundary imperfections. Results in this study together with the available experimental data have verified the reliability and advantage of the buckling design method based on energy barrier approach. A design criterion based on the energy barrier approach is therefore established and compared with the other criteria. Results indicate that buckling design based on energy barrier approach can be used as an efficient way in the lightweight design of thin-shell structures.


Author(s):  
Y. Shie

We present a meshless methodology for large scale computations of fractureing thin shell structures subjected to internal pressure loads. The contribution is the first step of an efficient numerical methodology for such kind of events. In this paper, numerical simulations of large deformation dynamic fracture in thin shell structures using 3-D meshfree methods is presented. Due to the smoothness of the meshfree shape functions, they are well suited to simulate large deformation of thin shell structures while avoiding ill-conditioning as well as stiffening in numerical computations. The 3D meshfree representation allows high flexibility since thin structures as well as thick structures can be studied by the same methodology. The meshfree approach makes the methodology more flexible and independent as compared to finite elements, i.e. there is no need for creation of mesh. Dynamic fracture is modeled by a simple criterion, i.e. removing connectivity between adjacent nodes once a fracture criterion is met. The main advantage of such a 3-D meshfree continuum approach is its simplicity in both formulation and implementation as compared to shell theory approach, or degenerated continuum approach. Moreover, it is believed that the accuracy of the computation may increase because of using 3-D exact formulation.


Author(s):  
Antonio Pedivellano ◽  
Eleftherios Gdoutos ◽  
Sergio Pellegrino

2017 ◽  
Vol 265 ◽  
pp. 779-784
Author(s):  
N.Ya. Tsimbelman ◽  
T.I. Chernova ◽  
T.E. Shalaya

The article examines the history of development and state-of-the-art of the design theory of structures of filled shells delivered in “Civil Engineering” specialist, MSc, and postgraduate engineering disciplines courses. The analysis of the engineering design methods based on the theory of shells propositions has been performed. Structural numerical model field of application expansion has been proved. The obtained parameters and proposed methods can be used in numerical simulations using finite element method to analyze and design the thin shell structures with soil infill. The propositions reflecting state-of-the-art of the design theory of the structures under consideration have been set; their place in the logic of delivering engineering disciplines taught to civil engineering students has been designated.


Sign in / Sign up

Export Citation Format

Share Document