Main Gas Pipeline Route Selection Problems, Taking into Consideration Risk and Uncertainty Factors

1982 ◽  
pp. 91-101 ◽  
Author(s):  
Y. S. Oseredko ◽  
O. I. Larichev ◽  
A. I. Mechitov
Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1325 ◽  
Author(s):  
Vasyl Zapukhliak ◽  
Lyubomyr Poberezhny ◽  
Pavlo Maruschak ◽  
Volodymyr Grudz ◽  
Roman Stasiuk ◽  
...  

Under insufficient loading of a main gas transmission system, high-amplitude fluctuations of pressure may occur in it. A mathematical model is proposed to estimate the amplitude of pressure fluctuations in a gas pipeline along its length. It has been revealed that the shutdown of compressor stations along the gas pipeline route has a significant impact on the parameters of the unsteady transient operating conditions. The possibility of minimizing oscillation processes by disconnecting compressor stations is substantiated for the “Soyuz” main gas pipeline.


Author(s):  
Nataliya Belova ◽  
Nataliya Belova ◽  
Alisa Baranskaya ◽  
Alisa Baranskaya ◽  
Osip Kokin ◽  
...  

The coasts of Baydaratskaya Bay are composed by loose frozen sediments. At Yamal Peninsula accumulative coasts are predominant at the site where pipeline crosses the coast, while thermoabrasional coast are prevail at the Ural coast crossing site. Coastal dynamics monitoring on both sites is conducted using field and remote methods starting from the end of 1980s. As a result of construction in the coastal zone the relief morphology was disturbed, both lithodynamics and thermal regime of the permafrost within the areas of several km around the sites where gas pipeline crosses coastline was changed. At Yamal coast massive removal of deposits from the beach and tideflat took place. The morphology of barrier beach, which previously was a natural wave energy dissipater, was disturbed. This promoted inland penetration of storm surges and permafrost degradation under the barrier beach. At Ural coast the topsoil was disrupted by construction trucks, which affected thermal regime of the upper part of permafrost and lead to active layer deepening. Thermoerosion and thermoabrasion processes have activated on coasts, especially at areas with icy sediments, ice wedges and massive ice beds. Construction of cofferdams resulted in overlapping of sediments transit on both coasts and caused sediment deficit on nearby nearshore zone areas. The result of technogenic disturbances was widespread coastal erosion activation, which catastrophic scale is facilitated by climate warming in the Arctic.


Polar Record ◽  
1978 ◽  
Vol 19 (120) ◽  
pp. 282-285
Author(s):  
J. Coombs ◽  
C. Madden
Keyword(s):  

2019 ◽  
Vol 6 (1) ◽  
pp. 14-21
Author(s):  
Ya.V. Doroshenko

The research has been carried out for the purpose of a complex numerical three-dimensional modeling of the stressed state of taps and tees of main gas pipelines taking into account the gas-dynamic processes occurring in these shaped elements and the temperature difference in their walls. A 3D modeling of the elbow with a 90° angle and a reinforcing pad on the main line and the drainage of the passage line of the trunk of the main gas pipeline has been carried out. There has been studied the gas flow with 3D models of shaped elements of the main gas pipeline by means of the CFD modeling. The simulation has been рerformed for the equidistant tees in which the entire flow from the main stream flows into its branch. The mathematical model is based on the solution of the Navier–Stokes equation system, continuity equation, closed by a two-parametric k -e model of the Launder–Sharma turbulence with corresponding initial and boundary conditions. The simulation results are visualized in the ANSYS Fluent R18.2 Academic Postprocessor by constructing the pressure fields on the contours and in the longitudinal and transverse sections of shaped elements. The exact values of pressure at different points of the inner cavity of the shaped elements have been determined, the places of rise and fall of pressure identified. There have been performed the simulation of the temperature difference in the walls of the drainage, the trunk of the main gas pipeline in the module ANSYS Transient Thermal. The results of CFD and temperature modeling were imported into the mechanical module ANSYS Static Structural, where the finite element method was used to simulate the stressed state of the shaped elements of the main gas pipeline, taking into account the gas-dynamic processes occurring in their internal cavity and the temperature difference in the walls. The results of the simulation have been visualized by constructing a three-dimensional color fields of equivalent von Mises stresses in the tee and in the elbow. The places of the maximum equivalent stresses in the wall of the studied shaped elements have been revealed. 


Sign in / Sign up

Export Citation Format

Share Document