Diffusion Flame Stabilization by a Recirculating Flow — Flame Spread Downstream of an Ignition Point

Author(s):  
M. Konczalla
Author(s):  
Z. Gu ◽  
M. A. R. Sharif

Abstract The two-dimensional turbulent recirculating flow fields behind a V-shaped bluff body have been investigated numerically. Similar bluff bodies are used in combustion chambers for flame stabilization. The governing transport equations in conservative form are solved by a pressure based predictor-corrector method. The standard k-ϵ turbulence closure model and a boundary fitted multi-block curvilinear grid system are used in the computation. The code is validated against turbulent flow over a backward facing step problem. The predicted flow field behind the bluff body is also compared with experiment. It is found that while the qualitative features of the flow are well predicted, there is quantitative disagreement between the measurement and prediction. This disagreement can be partially attributed to the k-ϵ turbulence model which is known to be inadequate for recirculating flows. Parametric investigation of the flow field by varying the shape and size of the bluff body is also performed and the results are reported.


1986 ◽  
Vol 50 (4-6) ◽  
pp. 283-306 ◽  
Author(s):  
CHIUN-HSUN CHEN ◽  
JAMES S. T'IEN

Author(s):  
Christian Oliver Paschereit ◽  
Ephraim Gutmark

Flame stabilization in a swirl-stabilized combustor occurs in an aerodynamically generated recirculation region which is a result of vortex breakdown. The characteristics of the recirculating flow are dependent on the swirl number and on axial pressure gradients. Coupling to downstream pressure pulsations is also possible. Control methods of unstable thermoacoustic modes and reduction of NOx and CO emissions were investigated in a low-emission swirl-stabilized industrial combustor. Several axisymmetric and helical unstable modes were identified for fully premixed and diffusion type combustion. In addition to mode variation, the instabilities spanned a wide range of frequencies. The unstable modes that were associated with flow instabilities of the wake-like region on the combustor axis due to vortex breakdown (VBD), shear layer instabilities at the sudden expansion (dump plane) and equivalence ratio fluctuations were in a range of normalized frequency St = 0.5–1.1. Other unstable modes at higher frequencies of St = 7.77, were excited by the Kelvin-Helmholtz vortices shed at the burner’s exit. The combustion structures associated with the different unstable modes were visualized using phase locked images of OH chemiluminescence and analyzed using cross-correlations between OH detecting fiberoptics. After identifying the structure of the instabilities and determining their source, different geometrical changes were applied to disrupt their formation or vary their characteristics. These modifications reduced the periodic heat release and enabled decoupling of the heat from acoustic modes that led to thermoacoustic instabilities. The passive control techniques that will be described in this paper were effective in suppressing the thermoacoustic pressure oscillations and also reduced NOx and CO emissions.


Fluids ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 159
Author(s):  
Sawssen Chakchak ◽  
Ammar Hidouri ◽  
Hajar Zaidaoui ◽  
Mouldi Chrigui ◽  
Toufik Boushaki

This paper reports an experimental and numerical investigation of a methane-air diffusion flame stabilized over a swirler coaxial burner. The burner configuration consists of two tubes with a swirler placed in the annular part. The passage of the oxidant is ensured by the annular tube; however, the fuel is injected by the central jet through eight holes across the oxidizer flow. The experiments were conducted in a combustion chamber of 25 kW power and 48 × 48 × 100 cm3 dimensions. Numerical flow fields were compared with stereoscopic particle image velocimetry (stereo-PIV) fields for non-reacting and reacting cases. The turbulence was captured using the Reynolds averaged Navier-Stokes (RANS) approach, associated with the eddy dissipation combustion model (EDM) to resolve the turbulence/chemistry interaction. The simulations were performed using the Fluent CFD (Computational Fluid Dynamic) code. Comparison of the computed results and the experimental data showed that the RANS results were capable of predicting the swirling flow. The effect of the inlet velocity ratio on dynamic flow behavior, temperature distribution, species mass fraction and the pollutant emission were numerically studied. The results showed that the radial injection of fuel induces a partial premixing between reactants, which affects the flame behavior, in particular the flame stabilization. The increase in the velocity ratio (Rv) improves the turbulence and subsequently ameliorates the mixing. CO emissions caused by the temperature variation are also decreased due to the improvement of the inlet velocity ratio.


2003 ◽  
Vol 19 (3) ◽  
pp. 332-341 ◽  
Author(s):  
Matthew Juniper ◽  
Sebastien Candel

Sign in / Sign up

Export Citation Format

Share Document