Infinite Combinatorics and Large Cardinals

Author(s):  
Azriel Levy
2021 ◽  
Vol 172 (2) ◽  
pp. 102889
Author(s):  
Peter Holy ◽  
Philipp Lücke
Keyword(s):  

1996 ◽  
Vol 2 (1) ◽  
pp. 94-107 ◽  
Author(s):  
Greg Hjorth

§0. Preface. There has been an expectation that the endgame of the more tenacious problems raised by the Los Angeles ‘cabal’ school of descriptive set theory in the 1970's should ultimately be played out with the use of inner model theory. Questions phrased in the language of descriptive set theory, where both the conclusions and the assumptions are couched in terms that only mention simply definable sets of reals, and which have proved resistant to purely descriptive set theoretic arguments, may at last find their solution through the connection between determinacy and large cardinals.Perhaps the most striking example was given by [24], where the core model theory was used to analyze the structure of HOD and then show that all regular cardinals below ΘL(ℝ) are measurable. John Steel's analysis also settled a number of structural questions regarding HODL(ℝ), such as GCH.Another illustration is provided by [21]. There an application of large cardinals and inner model theory is used to generalize the Harrington-Martin theorem that determinacy implies )determinacy.However, it is harder to find examples of theorems regarding the structure of the projective sets whose only known proof from determinacy assumptions uses the link between determinacy and large cardinals. We may equivalently ask whether there are second order statements of number theory that cannot be proved under PD–the axiom of projective determinacy–without appealing to the large cardinal consequences of the PD, such as the existence of certain kinds of inner models that contain given types of large cardinals.


2009 ◽  
Vol 159 (1-2) ◽  
pp. 71-99 ◽  
Author(s):  
Andrew D. Brooke-Taylor ◽  
Sy-David Friedman
Keyword(s):  

2006 ◽  
Vol 71 (3) ◽  
pp. 1029-1043 ◽  
Author(s):  
Natasha Dobrinen ◽  
Sy-David Friedman

AbstractThis paper investigates when it is possible for a partial ordering ℙ to force Pk(Λ)\V to be stationary in Vℙ. It follows from a result of Gitik that whenever ℙ adds a new real, then Pk(Λ)\V is stationary in Vℙ for each regular uncountable cardinal κ in Vℙ and all cardinals λ ≥ κ in Vℙ [4], However, a covering theorem of Magidor implies that when no new ω-sequences are added, large cardinals become necessary [7]. The following is equiconsistent with a proper class of ω1-Erdős cardinals: If ℙ is ℵ1-Cohen forcing, then Pk(Λ)\V is stationary in Vℙ, for all regular κ ≥ ℵ2and all λ ≩ κ. The following is equiconsistent with an ω1-Erdős cardinal: If ℙ is ℵ1-Cohen forcing, then is stationary in Vℙ. The following is equiconsistent with κ measurable cardinals: If ℙ is κ-Cohen forcing, then is stationary in Vℙ.


Author(s):  
John M. Harris ◽  
Jeffry L. Hirst ◽  
Michael J. Mossinghoff

2017 ◽  
Vol 17 (02) ◽  
pp. 1750007 ◽  
Author(s):  
Omer Ben-Neria ◽  
Spencer Unger

We present a new technique for changing the cofinality of large cardinals using homogeneous forcing. As an application we show that many singular cardinals in [Formula: see text] can be measurable in HOD. We also answer a related question of Cummings, Friedman and Golshani by producing a model in which every regular uncountable cardinal [Formula: see text] in [Formula: see text] is [Formula: see text]-supercompact in HOD.


1985 ◽  
Vol 50 (2) ◽  
pp. 531-543 ◽  
Author(s):  
Arthur W. Apter

A very fruitful line of research in recent years has been the application of techniques in large cardinals and forcing to the production of models in which certain consequences of the axiom of determinateness (AD) are true or in which certain “AD-like” consequences are true. Numerous results have been published on this subject, among them the papers of Bull and Kleinberg [4], Bull [3], Woodin [15], Mitchell [11], and [1], [2].Another such model will be constructed in this paper. Specifically, the following theorem is proven.Theorem 1. Con(ZFC + There are cardinals κ < δ < λ so that κ is a supercompact limit of supercompact cardinals, λ is a measurable cardinal, and δ is λ supercompact) ⇒ Con(ZF + ℵ1 and ℵ2 are Ramsey cardinals + The ℵn for 3 ≤ n ≤ ω are singular cardinals of cofinality ω each of which carries a Rowbottom filter + ℵω + 1 is a Ramsey cardinal + ℵω + 2 is a measurable cardinal).It is well known that under AD + DC, ℵ2 and ℵ2 are measurable cardinals, the ℵn for 3 ≤ n < ω are singular Jonsson cardinals of cofinality ℵ2, ℵω is a Rowbottom cardinal, and ℵω + 1 and ℵω + 2 are measurable cardinals.The proof of the above theorem will use the existence of normal ultrafilters which satisfy a certain property (*) (to be defined later) and an automorphism argument which draws upon the techniques developed in [9], [2], and [4] but which shows in addition that certain supercompact Prikry partial orderings are in a strong sense “homogeneous”. Before beginning the proof of the theorem, however, we briefly mention some preliminaries.


Sign in / Sign up

Export Citation Format

Share Document