On the Oscillations of the Black Sea Level in the Holocene Period from an Archaeological Viewpoint

Author(s):  
Blagoje Govedarica
Author(s):  
Nikolay Esin ◽  
Nikolay Esin ◽  
Vladimir Ocherednik ◽  
Vladimir Ocherednik

A mathematical model describing the change in the Black Sea level depending on the Aegean Sea level changes is presented in the article. Calculations have shown that the level of the Black Sea has been repeating the course of the Aegean Sea level for the last at least 6,000 years. And the level of the Black Sea above the Aegean Sea level in the tens of centimeters for this period of time.


2021 ◽  
Vol 82 (2) ◽  
pp. 3-25
Author(s):  
Dimcho Evstatiev ◽  
Yordan Evlogiev ◽  
Mariana Nedelcheva

In the second half of the Ist century BC seismogenic landslide/rockfall tore off the front part of the Chirakman Cape in the western part of the Kavarna Bay. The rich quarters of the Roman city of Bisone slid down into the sea. According to data from underwater archaeology artifacts and walls of the settlement are found up to 80 m inside the sea. The paper considers the tectonic conditions, the geological-geomorphological structure of the landslide, the paleogeography of the coastal shelf during the Holocene and the hydrogeological and engineering geological conditions in the area. A reconstruction of the coastline and sea-level position during the catastrophic landslide has been developed. Stability analyses have been performed too.


The Holocene ◽  
2019 ◽  
Vol 29 (6) ◽  
pp. 941-952 ◽  
Author(s):  
Mehmet Korhan Erturaç ◽  
Eren Şahiner ◽  
Cengiz Zabcı ◽  
Hilal Okur ◽  
Georgios S Polymeris ◽  
...  

The Sakarya River is among the largest fluvial systems of the southern Black Sea basin, draining most of NW Anatolia. The river crosses the high relief of the Pontide mountain range through successive narrow gorges and strike-slip basins formed by the North Anatolian Fault (NAF) System. We have investigated this fluvial record along the course of the main river channel at its lower reaches. The study site is located south of the Adapazarı Basin, ~50 km inland from the Black Sea, where remnant floodplains are preserved as a three-step terrace staircase resulting from continuous uplift to the south of the NAF. The combination of high resolution mapping with a detailed luminescence (OSL and p-IR-IRSL) and radiocarbon geochronology has shed light on changes in the level of the Black Sea and in the hydrological system during the late Pleistocene to recent. The last glacial period is represented by the highest terrace (T3) indicating deposition during marine isotope stage (MIS) 3 in between two low stands of the Black Sea. Following a long-term erosional period initiated prior to last glacial maximum (LGM), the initiation of the deposition (T2) was synchronous with the proposed catastrophic sea level rise of the Black Sea (cal. C14 9.3 ka BP) which continued throughout the Holocene until the Roman warm period (1.8 ka BP). The late-Holocene to recent morphological evolution of the region is marked with two sequential erosional and depositional (T1 and T0) periods, which can be correlated with the well-documented historical climate shifts affecting the hydrological system. These results reveal that the erosional and depositional periods on the Sakarya River floodplain are controlled by major sea level changes and climatically induced fluctuations in discharge and sediment supply.


Author(s):  
Nikolay Esin ◽  
Nikolay Esin ◽  
Vladimir Ocherednik ◽  
Vladimir Ocherednik

A mathematical model describing the change in the Black Sea level depending on the Aegean Sea level changes is presented in the article. Calculations have shown that the level of the Black Sea has been repeating the course of the Aegean Sea level for the last at least 6,000 years. And the level of the Black Sea above the Aegean Sea level in the tens of centimeters for this period of time.


2009 ◽  
Vol 10 (10) ◽  
pp. n/a-n/a ◽  
Author(s):  
J. Bartol ◽  
R. Govers
Keyword(s):  

2015 ◽  
Vol 45 (9-10) ◽  
pp. 2633-2646 ◽  
Author(s):  
Denis L. Volkov ◽  
Felix W. Landerer

1999 ◽  
Vol 10 (2) ◽  
pp. 123-130
Author(s):  
Yu. I. Goryachkin ◽  
V. A. Ivanov ◽  
Yu. A. Stepanyants

2013 ◽  
Vol 38 (5) ◽  
pp. 329-333 ◽  
Author(s):  
A. A. Kubryakov ◽  
S. V. Stanichnyi

Sign in / Sign up

Export Citation Format

Share Document