Agricultural Intensification, Population Growth and Forest Cover Change: Evidence from Spatially Explicit Land Use Modeling in the Central Highlands of Vietnam

Author(s):  
Daniel Müller ◽  
Manfred Zeller
Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 173
Author(s):  
Changjun Gu ◽  
Yili Zhang ◽  
Linshan Liu ◽  
Lanhui Li ◽  
Shicheng Li ◽  
...  

Land use and land cover (LULC) changes are regarded as one of the key drivers of ecosystem services degradation, especially in mountain regions where they may provide various ecosystem services to local livelihoods and surrounding areas. Additionally, ecosystems and habitats extend across political boundaries, causing more difficulties for ecosystem conservation. LULC in the Kailash Sacred Landscape (KSL) has undergone obvious changes over the past four decades; however, the spatiotemporal changes of the LULC across the whole of the KSL are still unclear, as well as the effects of LULC changes on ecosystem service values (ESVs). Thus, in this study we analyzed LULC changes across the whole of the KSL between 2000 and 2015 using Google Earth Engine (GEE) and quantified their impacts on ESVs. The greatest loss in LULC was found in forest cover, which decreased from 5443.20 km2 in 2000 to 5003.37 km2 in 2015 and which mainly occurred in KSL-Nepal. Meanwhile, the largest growth was observed in grassland (increased by 548.46 km2), followed by cropland (increased by 346.90 km2), both of which mainly occurred in KSL-Nepal. Further analysis showed that the expansions of cropland were the major drivers of the forest cover change in the KSL. Furthermore, the conversion of cropland to shrub land indicated that farmland abandonment existed in the KSL during the study period. The observed forest degradation directly influenced the ESV changes in the KSL. The total ESVs in the KSL decreased from 36.53 × 108 USD y−1 in 2000 to 35.35 × 108 USD y−1 in 2015. Meanwhile, the ESVs of the forestry areas decreased by 1.34 × 108 USD y−1. This shows that the decrease of ESVs in forestry was the primary cause to the loss of total ESVs and also of the high elasticity. Our findings show that even small changes to the LULC, especially in forestry areas, are noteworthy as they could induce a strong ESV response.


Diversity ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 1 ◽  
Author(s):  
Damayanti Buchori ◽  
Akhmad Rizali ◽  
Windra Priawandiputra ◽  
Dewi Sartiami ◽  
Midzon Johannis

Global decline of pollinators, especially bees, has been documented in many countries. Several causes such as land-use change and agricultural intensification are reported to be the main drivers of the decline. The objective of this study was to investigate the effect of land use on honey bee and stingless bee populations. Research was conducted in Bogor and Malang to compare between two different geographical areas. Managed bees such as honey bees (Apis cerana and A. mellifera) and stingless bees (Tetragonula laeviceps) were investigated to examine the effect of agricultural intensification. Field experiments were conducted by placing beehives in selected habitats (i.e., beekeeper gardens, forests areas, and agriculture areas). Population growth and neonicotinoid residue analysis of bees in different hive locations were measured to study the effect of habitat type. Population growth of bees represents the forager abundance and colony weight. Based on the analysis, we found that habitat type affected forager abundance and colony weight of honey bees (p < 0.05), although the patterns were different between species, region, as well as season. Forests could support the stingless bee colony better than agriculture and home garden habitats. Insecticide (neonicotinoid) was barely recorded in both honey bees and stingless bees.


2014 ◽  
Vol 33 (3) ◽  
pp. 55-63 ◽  
Author(s):  
Dominik Kaim ◽  
Jacek Kozak ◽  
Krzysztof Ostafin ◽  
Monika Dobosz ◽  
Katarzyna Ostapowicz ◽  
...  

Abstract The paper presents the outcomes of the uncertainty investigation of a long-term forest cover change analysis in the Polish Carpathians (nearly 20,000 km2) and Swiss Alps (nearly 10,000 km2) based on topographic maps. Following Leyk et al. (2005) all possible uncertainties are grouped into three domains - production-oriented, transformation- oriented and application-oriented. We show typical examples for each uncertainty domain, encountered during the forest cover change analysis and discuss consequences for change detection. Finally, a proposal for reliability assessment is presented.


2000 ◽  
Vol 27 (3) ◽  
pp. 284-290 ◽  
Author(s):  
W.D. SUNDERLIN ◽  
O. NDOYE ◽  
H. BIKIÉ ◽  
N. LAPORTE ◽  
B. MERTENS ◽  
...  

The rate of forest cover loss in the humid tropics of Cameroon is one of the highest in Central Africa. The aim of the large-scale, two-year research project described here was to understand the effect of the country's economic crisis and policy change on small-scale agricultural systems and land-clearing practices. Hypotheses were tested through surveys of more than 5000 households in 125 villages, and through time-series remote sensing analysis at two sites. The principal findings are that: (1) the rate of deforestation increased significantly in the decade after the 1986 onset of the crisis, as compared to the decade prior to the crisis; (2) the main proximate causes of this change were sudden rural population growth and a shift from production of cocoa and coffee to plantain and other food crops; and (3) the main underlying causes were macroeconomic shocks and structural adjustment policies that led to rural population growth and farming system changes. The implication of this study is that it is necessary to understand and anticipate the undesirable consequences of macroeconomic shocks and adjustment policies for forest cover. Such policies, even though they are often not formulated with natural resource consequences in mind, are often of greater relevance to the fate of forests than forest policy.


2020 ◽  
Vol 12 (20) ◽  
pp. 3351
Author(s):  
Sawaid Abbas ◽  
Man Sing Wong ◽  
Jin Wu ◽  
Naeem Shahzad ◽  
Syed Muhammad Irteza

Tropical forests are acknowledged for providing important ecosystem services and are renowned as “the lungs of the planet Earth” due to their role in the exchange of gasses—particularly inhaling CO2 and breathing out O2—within the atmosphere. Overall, the forests provide 50% of the total plant biomass of the Earth, which accounts for 450–650 PgC globally. Understanding and accurate estimates of tropical forest biomass stocks are imperative in ascertaining the contribution of the tropical forests in global carbon dynamics. This article provides a review of remote-sensing-based approaches for the assessment of above-ground biomass (AGB) across the tropical forests (global to national scales), summarizes the current estimate of pan-tropical AGB, and discusses major advancements in remote-sensing-based approaches for AGB mapping. The review is based on the journal papers, books and internet resources during the 1980s to 2020. Over the past 10 years, a myriad of research has been carried out to develop methods of estimating AGB by integrating different remote sensing datasets at varying spatial scales. Relationships of biomass with canopy height and other structural attributes have developed a new paradigm of pan-tropical or global AGB estimation from space-borne satellite remote sensing. Uncertainties in mapping tropical forest cover and/or forest cover change are related to spatial resolution; definition adapted for ‘forest’ classification; the frequency of available images; cloud covers; time steps used to map forest cover change and post-deforestation land cover land use (LCLU)-type mapping. The integration of products derived from recent Synthetic Aperture Radar (SAR) and Light Detection and Ranging (LiDAR) satellite missions with conventional optical satellite images has strong potential to overcome most of these uncertainties for recent or future biomass estimates. However, it will remain a challenging task to map reference biomass stock in the 1980s and 1990s and consequently to accurately quantify the loss or gain in forest cover over the periods. Aside from these limitations, the estimation of biomass and carbon balance can be enhanced by taking account of post-deforestation forest recovery and LCLU type; land-use history; diversity of forest being recovered; variations in physical attributes of plants (e.g., tree height; diameter; and canopy spread); environmental constraints; abundance and mortalities of trees; and the age of secondary forests. New methods should consider peak carbon sink time while developing carbon sequestration models for intact or old-growth tropical forests as well as the carbon sequestration capacity of recovering forest with varying levels of floristic diversity.


2019 ◽  
Vol 39 (1) ◽  
pp. 35-60 ◽  
Author(s):  
Michael O. Asibey ◽  
Kwasi O. Agyeman ◽  
Owusu Amponsah ◽  
Theophilus Ansah

Sign in / Sign up

Export Citation Format

Share Document