Antigen Mimicry Cytotoxic T Cells Specific for Epstein-Barr Virus Recognize HLA Alloantigens

1989 ◽  
pp. 376-378
Author(s):  
Dolores J. Schendel ◽  
Erich Lederer ◽  
Gabriele Multhoff ◽  
Elfriede Nößner
2004 ◽  
Vol 78 (4) ◽  
pp. 1665-1674 ◽  
Author(s):  
Takashi Nakayama ◽  
Kunio Hieshima ◽  
Daisuke Nagakubo ◽  
Emiko Sato ◽  
Masahiro Nakayama ◽  
...  

ABSTRACT Chemokines are likely to play important roles in the pathophysiology of diseases associated with Epstein-Barr virus (EBV). Here, we have analyzed the repertoire of chemokines expressed by EBV-infected B cells. EBV infection of B cells induced expression of TARC/CCL17 and MDC/CCL22, which are known to attract Th2 cells and regulatory T cells via CCR4, and also upregulated constitutive expression of MIP-1α/CCL3, MIP-1β/CCL4, and RANTES/CCL5, which are known to attract Th1 cells and cytotoxic T cells via CCR5. Accordingly, EBV-immortalized B cells secreted these chemokines, especially CCL3, CCL4, and CCL22, in large quantities. EBV infection or stable expression of LMP1 also induced CCL17 and CCL22 in a B-cell line, BJAB. The inhibitors of the TRAF/NF-κB pathway (BAY11-7082) and the p38/ATF2 pathway (SB202190) selectively suppressed the expression of CCL17 and CCL22 in EBV-immortalized B cells and BJAB-LMP1. Consistently, transient-transfection assays using CCL22 promoter-reporter constructs demonstrated that two NF-κB sites and a single AP-1 site were involved in the activation of the CCL22 promoter by LMP1. Finally, serum CCL22 levels were significantly elevated in infectious mononucleosis. Collectively, LMP1 induces CCL17 and CCL22 in EBV-infected B cells via activation of NF-κB and probably ATF2. Production of CCL17 and CCL22, which attract Th2 and regulatory T cells, may help EBV-infected B cells evade immune surveillance by Th1 cells. However, the concomitant production of CCL3, CCL4, and CCL5 by EBV-infected B cells may eventually attract Th1 cells and cytotoxic T cells, leading to elimination of EBV-infected B cells at latency III and to selection of those with limited expression of latent genes.


Blood ◽  
1998 ◽  
Vol 92 (5) ◽  
pp. 1549-1555 ◽  
Author(s):  
Cliona M. Rooney ◽  
Colton A. Smith ◽  
Catherine Y.C. Ng ◽  
Susan K. Loftin ◽  
John W. Sixbey ◽  
...  

Abstract Epstein-Barr virus (EBV) causes potentially lethal immunoblastic lymphoma in up to 25% of children receiving bone marrow transplants from unrelated or HLA-mismatched donors. Because this complication appears to stem from a deficiency of EBV-specific cytotoxic T cells, we assessed the safety and efficacy of donor-derived polyclonal (CD4+ and CD8+) T-cell lines as immunoprophylaxis and treatment for EBV-related lymphoma. Thirty-nine patients considered to be at high risk for EBV-induced lymphoma each received 2 to 4 intravenous infusions of donor-derived EBV-specific T lymphocytes, after they had received T-cell–depleted bone marrow from HLA-matched unrelated donors (n = 33) or mismatched family members (n = 6). The immunologic effects of this therapy were monitored during and after the infusions. Infused cells were identified by detection of the neo marker gene. EBV-specific T cells bearing theneo marker were identified in all but 1 of the patients. Serial analysis of DNA detected the marker gene for as long as 18 weeks in unmanipulated peripheral blood mononuclear cells and for as long as 38 months in regenerated lines of EBV-specific cytotoxic T cells. Six patients (15.5%) had greatly increased amounts of EBV-DNA on study entry (>2,000 genome copies/106 mononuclear cells), indicating uncontrolled EBV replication, a complication that has had a high correlation with subsequent development of overt lymphoma. All of these patients showed 2 to 4 log decreases in viral DNA levels within 2 to 3 weeks after infusion and none developed lymphoma, confirming the antiviral activity of the donor-derived cells. There were no toxic effects that could be attributed to prophylactic T-cell therapy. Two additional patients who did not receive prophylaxis and developed overt immunoblastic lymphoma responded fully to T-cell infusion. Polyclonal donor-derived T-cell lines specific for EBV proteins can thus be used safely to prevent EBV-related immunoblastic lymphoma after allogeneic marrow transplantation and may also be effective in the treatment of established disease. © 1998 by The American Society of Hematology.


Blood ◽  
1998 ◽  
Vol 92 (5) ◽  
pp. 1549-1555 ◽  
Author(s):  
Cliona M. Rooney ◽  
Colton A. Smith ◽  
Catherine Y.C. Ng ◽  
Susan K. Loftin ◽  
John W. Sixbey ◽  
...  

Epstein-Barr virus (EBV) causes potentially lethal immunoblastic lymphoma in up to 25% of children receiving bone marrow transplants from unrelated or HLA-mismatched donors. Because this complication appears to stem from a deficiency of EBV-specific cytotoxic T cells, we assessed the safety and efficacy of donor-derived polyclonal (CD4+ and CD8+) T-cell lines as immunoprophylaxis and treatment for EBV-related lymphoma. Thirty-nine patients considered to be at high risk for EBV-induced lymphoma each received 2 to 4 intravenous infusions of donor-derived EBV-specific T lymphocytes, after they had received T-cell–depleted bone marrow from HLA-matched unrelated donors (n = 33) or mismatched family members (n = 6). The immunologic effects of this therapy were monitored during and after the infusions. Infused cells were identified by detection of the neo marker gene. EBV-specific T cells bearing theneo marker were identified in all but 1 of the patients. Serial analysis of DNA detected the marker gene for as long as 18 weeks in unmanipulated peripheral blood mononuclear cells and for as long as 38 months in regenerated lines of EBV-specific cytotoxic T cells. Six patients (15.5%) had greatly increased amounts of EBV-DNA on study entry (>2,000 genome copies/106 mononuclear cells), indicating uncontrolled EBV replication, a complication that has had a high correlation with subsequent development of overt lymphoma. All of these patients showed 2 to 4 log decreases in viral DNA levels within 2 to 3 weeks after infusion and none developed lymphoma, confirming the antiviral activity of the donor-derived cells. There were no toxic effects that could be attributed to prophylactic T-cell therapy. Two additional patients who did not receive prophylaxis and developed overt immunoblastic lymphoma responded fully to T-cell infusion. Polyclonal donor-derived T-cell lines specific for EBV proteins can thus be used safely to prevent EBV-related immunoblastic lymphoma after allogeneic marrow transplantation and may also be effective in the treatment of established disease. © 1998 by The American Society of Hematology.


Sign in / Sign up

Export Citation Format

Share Document