Interior Noise Prediction of High-Speed Train Based on Hybrid FE-SEA Method

Author(s):  
Y. J. Zhao ◽  
X. Deng ◽  
S. Q Liu ◽  
R. Shuai ◽  
Z. J. Sun ◽  
...  
Author(s):  
Muxiao Li ◽  
Ziwei Zhu ◽  
Tiesong Deng ◽  
Xiaozhen Sheng

AbstractPassengers' demands for riding comfort have been getting higher and higher as the high-speed railway develops. Scientific methods to analyze the interior noise of the high-speed train are needed and the operational transfer path analysis (OTPA) method provides a theoretical basis and guidance for the noise control of the train and overcomes the shortcomings of the traditional method, which has high test efficiency and can be carried out during the working state of the targeted machine. The OTPA model is established from the aspects of "path reference point-target point" and "sound source reference point-target point". As for the mechanism of the noise transmission path, an assumption is made that the direct sound propagation is ignored, and the symmetric sound source and the symmetric path are merged. Using the operational test data and the OTPA method, combined with the results of spherical array sound source identification, the path contribution and sound source contribution of the interior noise are analyzed, respectively, from aspects of the total value and spectrum. The results show that the OTPA conforms to the calculation results of the spherical array sound source identification. At low speed, the contribution of the floor path and the contribution of the bogie sources are dominant. When the speed is greater than 300 km/h, the contribution of the roof path is dominant. Moreover, for the carriage with a pantograph, the lifted pantograph is an obvious source. The noise from the exterior sources of the train transfer into the interior mainly through the form of structural excitation, and the contribution of air excitation is non-significant. Certain analyses of train parts provide guides for the interior noise control.


2019 ◽  
Vol 9 (22) ◽  
pp. 4924
Author(s):  
Lee ◽  
Cheong ◽  
Kim ◽  
Kim

The high-speed train interior noise induced by the exterior flow field is one of the critical issues for product developers to consider during design. The reliable numerical prediction of noise in a passenger cabin due to exterior flow requires the decomposition of surface pressure fluctuations into the hydrodynamic (incompressible) and the acoustic (compressible) components, as well as the accurate computation of the near aeroacoustic field, since the transmission characteristics of incompressible and compressible pressure waves through the wall panel of the cabin are quite different from each other. In this paper, a systematic numerical methodology is presented to obtain separate incompressible and compressible surface pressure fields in the wavenumber–frequency and space–time domains. First, large eddy simulation techniques were employed to predict the exterior flow field, including a highly-resolved acoustic near-field, around a high-speed train running at the speed of 300 km/h in an open field. Pressure fluctuations on the train surface were then decomposed into incompressible and compressible fluctuations using the wavenumber–frequency analysis. Finally, the separated incompressible and compressible surface pressure fields were obtained from the inverse Fourier transform of the wavenumber–frequency spectrum. The current method was illustratively applied to the high-speed train HEMU-430X running at a speed of 300 km/h in an open field. The results showed that the separate incompressible and compressible surface pressure fields in the time–space domain could be obtained together with the associated aerodynamic source mechanism. The power levels due to each pressure field were also estimated, and these can be directly used for interior noise prediction.


2012 ◽  
Vol 131 (4) ◽  
pp. 3263-3263
Author(s):  
Guo Yanjie ◽  
Liang Junhai ◽  
Wang Dongzhen ◽  
Ge Jianmin

Sign in / Sign up

Export Citation Format

Share Document