The Real-Time Monitoring System of Social Big Data for Disaster Management

Author(s):  
Seonhwa Choi ◽  
Byunggul Bae
2014 ◽  
Vol 610 ◽  
pp. 199-204 ◽  
Author(s):  
Xiao Fei Zhang ◽  
Zhong Hu Lv ◽  
Xian Wei Meng ◽  
Fan Jiang ◽  
Qing Zhang

Nowadays, fiber optic technology has been used in sensing. Using the distributed optical fiber sensing technology in the landslide monitoring, the linear strain distribution information of the whole landslide can be obtained, and adopting the Fiber Bragg Grating sensing technology in the landslide monitoring, the key pot strain and displacement information can be gained. This paper firstly reviews the basic principle of optical fiber sensing, and then describes the optical fiber sensing real-time monitoring system by combining with FBG technology, BOTDR technology, database technology and web server technology, and finally presents a field application experiment using the real-time monitoring system in Ripley landslide in Canada. The experiment indicated that the real-time monitoring system can be realized real-time monitoring of FBG and BOTDR for landslide, and the experience can be extended to other landslide.


Author(s):  
Bengang Bao ◽  
Xiangping Zhu ◽  
Yonghong Tan

<p class="keywords"><span lang="EN-US">Due to having a direct affect for the growth of crops, the monitor and modification for the indicators of Greenhouse environment play significant roles in improving the yield of crops. The system, which adopts FPGA technology to control and modify the air condition and lighting system by collecting and analyzing the data of the temperature and humidity, has achieved good effects in practice. In our study, the key technology of real-time data acquisition system based on FPGA is proposed. In particular, based on FPGA, the designed ADC0809 and asynchronous FIFO can save the data in real time, which can be analyzed and disposed timely, so that the environment can be corrected in time.</span></p>


The main aim of this paper is to deal with remote monitoring of various physical parameters of an electrical device via web-based application. This system facilitate user to monitor the real-time data from across the globe as the whole data is made available through pre-designed website. Real-time monitoring of electrical parameters is needed beside the high performance and precision of measurements with the development of modern industry towards networking. The main objectives of paper are to access the real-time data on global scale, to reduce the cost of visit & maintenance and finally to improve quality as well as throughput of production. All the physical parameters of an electronic device such as temperature, current, gas flow, viscosity etc. will be monitor independently. Microcontroller is used for the interconnection of all sensors and all collected information will be send to the web page using GSM facility. This real-time monitoring system definitely offers user for hassle free data accession. For high precision, repeatability of real-time data monitoring system has been done. This concept is helpful in industrial sectors for real time monitoring.


2017 ◽  
Vol 29 (1) ◽  
pp. 42-48 ◽  
Author(s):  
Lubomir Livovsky ◽  
Alena Pietrikova

Purpose This paper aims to present a new method of real-time monitoring of thermal profiles applied in vapour phase soldering (VPS) reflow processes. The thermal profile setting is a significant variable that affects the quality of joints. The method allows rapid achievement of a required thermal profile based on software control that brings new efficiency to the reflow process and enhanced joint quality, especially for power electronics. Design/methodology/approach A real-time monitoring system based on computerized heat control was realized in a newly developed laboratory VPS chamber using a proportional integral derivation controller within the soldering process. The principle lies in the strictly accurate monitoring of the real defined reflow profile as a reference. Findings Very accurate maintenance of the required reflow profile temperature was achieved with high accuracy (± 2°C). The new method of monitoring and control of the reflow real-time profiling was verified at various maximal reflow temperatures (230°C, 240°C and 260°C). The method is feasible for reflowing three-dimensional (3D) power modules that use various types of solders. The real-time monitoring system based on computerised heat control helped to achieve various heights of vapour zone. Originality/value The paper describes construction of a newly developed laboratory-scale VPS chamber, including novel real-time profiling of the reflow process based on intelligent continuously measured temperatures at various horizontal positions. Real-time profiling in the laboratory VPS chamber allowed reflow soldering on 3D power modules (of greater dimensions) by applying various flux-less solder materials.


2013 ◽  
Vol 579-580 ◽  
pp. 787-791 ◽  
Author(s):  
Teng Da Li ◽  
Wei Qin ◽  
Jie Zhang ◽  
Hua Li ◽  
Zeng Guang Xu ◽  
...  

Manufacturing of complex products is a multi-resource coupling process, in order to achieve precise control of its manufacturing process, it should ensure that the manufacturing process information is get in real-time and accurately, achieving the real synchronization of logistics and information flow. Complex products manufacturing workshop represented with aerospace products have poor real-time production information, low production information integration and low visual production monitoring. In order to solve those problems, this paper constructs manufacturing process visualized real-time monitoring system, this system is able to reflect the real-time dynamic workshop production schedule information, quality testing information and abnormal production information and so on. Combined with assembly plant of an Aerospace institutes actual production, this paper designs the architecture, functional structure as well as its business processes of the system, and proposes a metadata-based multi-source heterogeneous information integration technology, then, processes and integrates the collected production process information effectively and displays it through the station terminal, workshops signage. The system is able to share the workshop information resources effectively, and it has been successfully applied to the assembly plant, and has achieved good effect.


Sign in / Sign up

Export Citation Format

Share Document