Simultaneously Improving Quality and Time-to-Market in Agile Development

Author(s):  
Pryscilla Marcilli Dóra ◽  
Ana Cristina Oliveira ◽  
J. Antão B. Moura
Author(s):  
Sebastian Copei ◽  
Manuel Wickert ◽  
Albert Zündorf

Abstract The development of industry 4.0 and smart energy IT-Components relies on highly standardized communication protocols to reach vendor-independent interoperability. In innovative and fast-changing environments, the support of standard protocols increases the time to market significantly. In the energy domain, the business models and the regulatory frameworks will be updated more often than the protocols. Thus agile development and supporting standardized protocols at the same time seems to be an issue. Here we will present a new proposal for standardization and certification processes as well as an architecture for a certification platform. Both will improve the support of agile development in the industry and energy domain.


Author(s):  
Michael Riesener ◽  
Christian Doelle ◽  
Sebastian Schloesser ◽  
Guenther Schuh

Abstract Agile development processes such as Scrum have been successfully applied in the software industry for many years. Based on experience, industrial practitioners indicate three predominant benefits of agile development processes compared to traditional software development processes. First of all, development results better fit customers’ and other stakeholders’ needs. That is because they are intensively involved in the development process by receiving, applying and assessing functional software increments in a defined cadence throughout the development process. Secondly, agile development processes better cope with unexpected changes in the development process due to the built-in process flexibility. Lastly, development speed has significantly increased in most of the agile software development projects, resulting in a shorter time-to-market. Especially in the context of radical innovations for technical systems, manufacturing companies are striving for approaches to optimize their development processes in a similar direction. Traditional plan-oriented development approaches such as VDI 2221 or Cooper’s Stage-Gate Process turn out to be insufficiently customer oriented, too inflexible and project duration is usually too long to reach an adequate time-to-market. For that reason, a large community in academia and industrial practice is developing and implementing approaches to adapt agile software development practices for the development of technical systems. However, a current study in industrial practice reveals that out of 23 objectives, that are expected when introducing agile development processes to technical systems, the three objectives mentioned above, show the largest negative deviations from expected benefit to realized benefit. Therefore, the overall goal of this research is to address these gaps by developing an explicit methodological approach for an agile development of technical systems. It turns out, that mainly the role of prototyping and the way product specifications are handled during the development process change significantly in the course of introducing agility to development of technical systems. Agile practitioners strive to not necessarily define product specifications comprehensively upfront, as it is postulated in plan-oriented development processes. In contrast, product specifications, which are of major importance to the overall development project, are specified and validated with customers and other stakeholders in early prototypes. Therefore, prototypes are realized in a defined cadence throughout the development process to gradually specify and validate the product. However, the way product specifications are prioritized and selected in the development of technical systems has to differ substantially from the general way Scrum or other existing agile development processes propose. That is because technical systems are characterized by multiple technical interrelations, resulting in informational dependencies for the development process. For that reason, a prioritization along criteria such as customer value, development effort and risk seems too narrow in the context of technical systems. In fact, the prioritization of product specifications has to consider both, the value being generated by their realization as well as the informational dependencies towards other specifications. Furthermore, when designing a prototype, time constraints need to be particularly considered due to lead times in parts delivery and prototype production. Therefore, this paper introduces a methodology to prioritize and select technical design parameters in agile development processes. The methodology can be applied in the cyclical sprint planning that aims at defining the scope of the next prototype to be developed. As outlined above, the major paradigms of value generation, informational dependencies as well as lead-time and effort are crucial when adapting agile for technical systems and are consequently implemented in the methodology. These paradigms are operationalized to explicitly address the mentioned major objectives of agile development processes, which are currently showing are large gap between expected benefit and realized benefit in industrial practice. The methodology is applied to the real development process of an RGB laser light source for digital cinema projectors, which is summarized as a case study in the paper. Insights from this application are equally discussed as the resulting next steps in further developing and aligning the methodology to the needs of industrial practice.


2021 ◽  
Author(s):  
Pau Julià ◽  
David Salvador ◽  
Marc Peña

Software development methodologies have evolved during the last years to reduce the time to market to the minimum possible. Agile is one of the most common and used methodologies for rapid application development. As the agile manifesto defines in its 12 principles, one of its main goals is to satisfy the customer needs through early and continuous delivery of valuable software. Significantly, that none of the principles refers to security. In this paper, we will explain how Typeform integrates security activities into the whole development process, reducing at the same time the phases on the S-SDLC to reduce friction and improve delivery while maintaining the security level.


2015 ◽  
Vol 10 (6) ◽  
pp. 558 ◽  
Author(s):  
Kristian Sestak ◽  
Zdenek Havlice

Author(s):  
Sultan Alyahya ◽  
Ohoud Almughram

Abstract The integration of user-centered design (UCD) activities into agile information systems development has become more popular recently. Despite the fact that there are many ways the merging of UCD activities into agile development can be carried out, it has been widely recognized that coordinating design activities with development activities is one of the most common problems, especially in distributed environments where designers, developers and users are spread over several sites. The main approach to coordinate UCD activities with distributed agile development is the use of informal methods (e.g. communication through using video conference tools). In addition to the temporal, geographical and socio-cultural barriers associated with this type of methods, a major limitation is a lack of awareness of how UCD activities and development activities affect each other. Furthermore, some agile project management tools are integrated with design platforms but fail to provide the necessary coordination that helps team members understand how the design and development activities affect their daily work. This research aims to support the effective management of integrating UCD activities into distributed agile development by (i) identifying the key activity dependencies between UX design teams and development teams during distributed UCD/agile development and (ii) designing a computer-based system to provide coordination support through managing these activity dependencies. In order to achieve these objectives, two case studies are carried out. Our findings revealed 10 main dependencies between UCD design teams and development teams as shown by six types of activity. In addition, the participatory design approach shows that developing a computer-based system to manage seven of these selected dependencies is achievable.


Author(s):  
Renata de Oliveira Mota ◽  
Moacir Godinho Filho ◽  
Lauro Osiro ◽  
Gilberto Miller Devós Ganga ◽  
Glauco Henrique de Sousa Mendes

Sign in / Sign up

Export Citation Format

Share Document