Movement Curve and Hydrodynamic Analysis of the Four-Joint Biomimetic Robotic Fish

Author(s):  
Zhibin Xue ◽  
Hai Lin ◽  
Qian Zhang
2013 ◽  
Vol 39 (11) ◽  
pp. 1914 ◽  
Author(s):  
Zheng-Xing WU ◽  
Jun-Zhi YU ◽  
Zong-Shuai SU ◽  
Min TAN

2008 ◽  
Vol 51 (5) ◽  
pp. 535-549 ◽  
Author(s):  
JunZhi Yu ◽  
Long Wang ◽  
Wei Zhao ◽  
Min Tan

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xiaohu Li

Tuna can change the area and shape of the median fins, including the first dorsal, second dorsal, and anal fins. The morphing median fins have the ability of adjusting the hydrodynamic forces, thereby affecting the yaw mobility of tuna to a certain extent. In this paper, the hydrodynamic analysis of the median fins under different morphing states is carried out by the numerical method, so as to clarify the influence of the erected median fins on the yaw maneuvers. By comparing the two morphing states of erected and depressed, it can be concluded that the erected median fins can increase their own hydrodynamic forces during the yaw movement. However, the second dorsal and anal fins have limited influence on the yaw maneuverability, and they tend to maintain the stability of tuna. The first dorsal fin has more lift increment in the erection state, which can obviously affect the hydrodynamic performance of tuna. Moreover, as the median fins are erected, the hydrodynamic forces of the tuna’s body increase synchronously due to the interaction between the body and the median fins, which is also very beneficial to the yaw motion. This study indicates that tuna can use the morphing median fins to adjust its mobility and stability, which provides a new idea for the design of robotic fish.


2016 ◽  
Vol 27 (9) ◽  
pp. 1962-1968 ◽  
Author(s):  
Junzhi Yu ◽  
Zhengxing Wu ◽  
Ming Wang ◽  
Min Tan

2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
M. O. Afolayan ◽  
D. S. Yawas ◽  
C. O. Folayan ◽  
S. Y. Aku

A biologically inspired robot in the form of fish (mackerel) model using rubber (as the biomimetic material) for its hyper-redundant joint is presented in this paper. Computerized simulation of the most critical part of the model (the peduncle) shows that the rubber joints will be able to take up the stress that will be created. Furthermore, the frequency-induced softening of the rubber used was found to be critical if the joints are going to oscillate at frequency above 25 Hz. The robotic fish was able to attain a speed of 0.985 m/s while the tail beats at a maximum of 1.7 Hz when tested inside water. Furthermore, a minimum turning radius of 0.8 m (approximately 2 times the fish body length) was achieved.


Sign in / Sign up

Export Citation Format

Share Document