Sharpness of Lower Bound Estimates on the Life-Span of Classical Solutions to the Cauchy Problem—The Case that the Nonlinear Term $$F=F(u,Du, D_xDu)$$ F = F ( u , D u , D x D u ) on the Right-Hand Side Depends on u Explicitly

Author(s):  
Tatsien Li ◽  
Yi Zhou
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Zenggui Wang

In this paper, we investigate the life-span of classical solutions to hyperbolic inverse mean curvature flow. Under the condition that the curve can be expressed in the form of a graph, we derive a hyperbolic Monge–Ampère equation which can be reduced to a quasilinear hyperbolic system in terms of Riemann invariants. By the theory on the local solution for the Cauchy problem of the quasilinear hyperbolic system, we discuss life-span of classical solutions to the Cauchy problem of hyperbolic inverse mean curvature.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Jiafa Xu ◽  
Lishan Liu

In this paper, we consider the Cauchy problem for the 2D inviscid Boussinesq equations with N being the buoyancy frequency. It is proved that for general initial data u 0 ∈ H s with s > 3 , the life span of the classical solutions satisfies T > C ln     N 3 / 4 .


2013 ◽  
Vol 10 (02) ◽  
pp. 199-234
Author(s):  
SOICHIRO KATAYAMA ◽  
HIDEO KUBO

We consider the Cauchy–Dirichlet problem for semilinear wave equations in a three space-dimensional domain exterior to a bounded and non-trapping obstacle. We obtain a detailed estimate for the lower bound of the lifespan of classical solutions when the size of initial data tends to zero, in a similar spirit to that of the works of John and Hörmander where the Cauchy problem was treated. We show that our estimate is sharp at least for radially symmetric case.


2019 ◽  
Vol 11 (1) ◽  
pp. 107-118 ◽  
Author(s):  
A.O. Lopushansky ◽  
H.P. Lopushanska

We study the inverse problem for a differential equation of order $2b$ with the Riemann-Liouville fractional derivative of order $\beta\in (0,1)$ in time and given Schwartz type distributions in the right-hand sides of the equation and the initial condition. The problem is to find the pair of functions $(u, g)$: a generalized solution $u$ to the Cauchy problem for such equation and the time dependent multiplier $g$ in the right-hand side of the equation. As an additional condition, we use an analog of the integral condition $$(u(\cdot,t),\varphi_0(\cdot))=F(t), \;\;\; t\in [0,T],$$ where the symbol $(u(\cdot,t),\varphi_0(\cdot))$ stands for the value of an unknown distribution $u$ on the given test function $\varphi_0$ for every $t\in [0,T]$, $F$ is a given continuous function. We prove a theorem for the existence and uniqueness of a generalized solution of the Cauchy problem, obtain its representation using the Green's vector-function. The proof of the theorem is based on the properties of conjugate Green's operators of the Cauchy problem on spaces of the Schwartz type test functions and on the structure of the Schwartz type distributions. We establish sufficient conditions for a unique solvability of the inverse problem and find a representation of anunknown function $g$ by means of a solution of a certain Volterra integral equation of the second kind with an integrable kernel.


2021 ◽  
pp. 1-23
Author(s):  
Giuseppe Maria Coclite ◽  
Lorenzo di Ruvo

The Rosenau–Korteweg-deVries–Kawahara equation describes the dynamics of dense discrete systems or small-amplitude gravity capillary waves on water of a finite depth. In this paper, we prove the well-posedness of the classical solutions for the Cauchy problem.


1992 ◽  
Vol 5 (4) ◽  
pp. 363-373 ◽  
Author(s):  
L. Byszewski

The aim of the paper is to prove a theorem about the existence of an approximate solution to an abstract nonlinear nonlocal Cauchy problem in a Banach space. The right-hand side of the nonlocal condition belongs to a locally closed subset of a Banach space. The paper is a continuation of papers [1], [2] and generalizes some results from [3].


2019 ◽  
Vol 16 (02) ◽  
pp. 223-243
Author(s):  
De-Xing Kong ◽  
Qi Liu ◽  
Chang-Ming Song

We investigate a dissipative hyperbolic geometry flow in two space variables for which a new nonlinear wave equation is derived. Based on an energy method, the global existence of solutions to the dissipative hyperbolic geometry flow is established. Furthermore, the scalar curvature of the metric remains uniformly bounded. Moreover, under suitable assumptions, we establish the global existence of classical solutions to the Cauchy problem, and we show that the solution and its derivative decay to zero as the time tends to infinity. In addition, the scalar curvature of the solution metric converges to the one of the flat metric at an algebraic rate.


Sign in / Sign up

Export Citation Format

Share Document