Solving Finite-Linear-Path CTL-Formulas Using the CEGAR Approach

Author(s):  
Torsten Liebke ◽  
Karsten Wolf
Keyword(s):  
1995 ◽  
Vol 138 ◽  
pp. 169-177 ◽  
Author(s):  
Hong-Xun yi

For any set S and any entire function f letwhere each zero of f — a with multiplicity m is repeated m times in Ef(S) (cf. [1]). It is assumed that the reader is familiar with the notations of the Nevanlinna Theory (see, for example, [2]). It will be convenient to let E denote any set of finite linear measure on 0 < r < ∞, not necessarily the same at each occurrence. We denote by S(r, f) any quantity satisfying .


2011 ◽  
Vol 52-54 ◽  
pp. 1855-1860
Author(s):  
J.A. Fakharzadeh ◽  
F.N. Jafarpoor

The mean idea of this paper is to present a new combinatorial solution technique for the controlled vibrating circle shell systems. Based on the classical results of the wave equations on circle domains, the trajectory is considered as a finite trigonometric series with unknown coefficients in polar coordinates. Then, the problem is transferred to one in which its unknowns are a positive Radon measure and some positive coefficients. Extending the underlying space helps us to prove the existence of the solution. By using the density properties and some approximation schemes, the problem is deformed into a finite linear programming and the nearly optimal trajectory and control are identified simultaneously. A numerical example is also given.


1991 ◽  
Vol 43 (2) ◽  
pp. 241-250 ◽  
Author(s):  
J.N. Pandey ◽  
O.P. Singh

It is shown that a bounded linear operator T from Lρ(Rn) to itself which commutes both with translations and dilatations is a finite linear combination of Hilbert-type transforms. Using this we show that the ρ-norm of the Hilbert transform is the same as the ρ-norm of its truncation to any Lebesgue measurable subset of Rn with non-zero measure.


Author(s):  
María D. Fajardo ◽  
Miguel A. Goberna ◽  
Margarita M. L. Rodríguez ◽  
José Vicente-Pérez

10.37236/799 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Martin Klazar

For classes ${\cal O}$ of structures on finite linear orders (permutations, ordered graphs etc.) endowed with containment order $\preceq$ (containment of permutations, subgraph relation etc.), we investigate restrictions on the function $f(n)$ counting objects with size $n$ in a lower ideal in $({\cal O},\preceq)$. We present a framework of edge $P$-colored complete graphs $({\cal C}(P),\preceq)$ which includes many of these situations, and we prove for it two such restrictions (jumps in growth): $f(n)$ is eventually constant or $f(n)\ge n$ for all $n\ge 1$; $f(n)\le n^c$ for all $n\ge 1$ for a constant $c>0$ or $f(n)\ge F_n$ for all $n\ge 1$, $F_n$ being the Fibonacci numbers. This generalizes a fragment of a more detailed theorem of Balogh, Bollobás and Morris on hereditary properties of ordered graphs.


Author(s):  
Michael Shekelyan ◽  
Gregor Jossé ◽  
Matthias Schubert ◽  
Hans-Peter Kriegel
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document