downhill folding
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 3)

H-INDEX

16
(FIVE YEARS 1)

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rinaldo Grazioso ◽  
Sara García-Viñuales ◽  
Gianluca D’Abrosca ◽  
Ilaria Baglivo ◽  
Paolo Vincenzo Pedone ◽  
...  

AbstractDownhill folding has been defined as a unique thermodynamic process involving a conformations ensemble that progressively loses structure with the decrease of protein stability. Downhill folders are estimated to be rather rare in nature as they miss an energetically substantial folding barrier that can protect against aggregation and proteolysis. We have previously demonstrated that the prokaryotic zinc finger protein Ros87 shows a bipartite folding/unfolding process in which a metal binding intermediate converts to the native structure through a delicate barrier-less downhill transition. Significant variation in folding scenarios can be detected within protein families with high sequence identity and very similar folds and for the same sequence by varying conditions. For this reason, we here show, by means of DSC, CD and NMR, that also in different pH and ionic strength conditions Ros87 retains its partly downhill folding scenario demonstrating that, at least in metallo-proteins, the downhill mechanism can be found under a much wider range of conditions and coupled to other different transitions. We also show that mutations of Ros87 zinc coordination sphere produces a different folding scenario demonstrating that the organization of the metal ion core is determinant in the folding process of this family of proteins.


2020 ◽  
Vol 21 (21) ◽  
pp. 8285
Author(s):  
Rinaldo Grazioso ◽  
Sara García-Viñuales ◽  
Luigi Russo ◽  
Gianluca D’Abrosca ◽  
Sabrina Esposito ◽  
...  

The structural effects of zinc replacement by xenobiotic metal ions have been widely studied in several eukaryotic and prokaryotic zinc-finger-containing proteins. The prokaryotic zinc finger, that presents a bigger βββαα domain with a larger hydrophobic core with respect to its eukaryotic counterpart, represents a valuable model protein to study metal ion interaction with metallo-proteins. Several studies have been conducted on Ros87, the DNA binding domain of the prokaryotic zinc finger Ros, and have demonstrated that the domain appears to structurally tolerate Ni(II), albeit with important structural perturbations, but not Pb(II) and Hg(II), and it is in vitro functional when the zinc ion is replaced by Cd(II). We have previously shown that Ros87 unfolding is a two-step process in which a zinc binding intermediate converts to the native structure thorough a delicate downhill folding transition. Here, we explore the folding/unfolding behaviour of Ros87 coordinated to Co(II), Ni(II) or Cd(II), by UV-Vis, CD, DSC and NMR techniques. Interestingly, we show how the substitution of the native metal ion results in complete different folding scenarios. We found a two-state unfolding mechanism for Cd-Ros87 whose metal affinity Kd is comparable to the one obtained for the native Zn-Ros87, and a more complex mechanism for Co-Ros87 and Ni-Ros87, that show higher Kd values. Our data outline the complex cross-correlation between the protein–metal ion equilibrium and the folding mechanism proposing such an interplay as a key factor in the proper metal ion selection by a specific metallo-protein.


2020 ◽  
Vol 19 (04) ◽  
pp. 2040005 ◽  
Author(s):  
Xuewei Jiang ◽  
Zhengwu Wu ◽  
Zhenyuan Fan ◽  
Junhua Yin ◽  
Lu Zheng

The protein folding is an important scientific problem and many methods were designed to elucidate the protein folding and obtain insight into the molecular mechanism. A novel means is presented to identify the downhill pathways of protein folding in this paper. This method is based on barrier energy profile projected onto the generalized path length (GPL) with Breadth-first searching (BFS) algorithm. We show the effectiveness of this approach by constructing the barrier energy profile of trpzip2 and comparing with other methods.


2018 ◽  
Vol 373 (1749) ◽  
pp. 20170187 ◽  
Author(s):  
Gerhard Stock ◽  
Peter Hamm

While the theory of protein folding is well developed, including concepts such as rugged energy landscape, folding funnel, etc., the same degree of understanding has not been reached for the description of the dynamics of allosteric transitions in proteins. This is not only due to the small size of the structural change upon ligand binding to an allosteric site, but also due to challenges in designing experiments that directly observe such an allosteric transition. On the basis of recent pump-probe-type experiments (Buchli et al. 2013 Proc. Natl Acad. Sci. USA 110 , 11 725–11 730. ( doi:10.1073/pnas.1306323110 )) and non-equilibrium molecular dynamics simulations (Buchenberg et al. 2017 Proc. Natl Acad. Sci. USA 114 , E6804–E6811. ( doi:10.1073/pnas.1707694114 )) studying an photoswitchable PDZ2 domain as model for an allosteric transition, we outline in this perspective how such a description of allosteric communication might look. That is, calculating the dynamical content of both experiment and simulation (which agree remarkably well with each other), we find that allosteric communication shares some properties with downhill folding, except that it is an ‘order–order’ transition. Discussing the multiscale and hierarchical features of the dynamics, the validity of linear response theory as well as the meaning of ‘allosteric pathways’, we conclude that non-equilibrium experiments and simulations are a promising way to study dynamical aspects of allostery. This article is part of a discussion meeting issue ‘Allostery and molecular machines’.


2017 ◽  
Author(s):  
Jana Shen ◽  
Zhi Yue

<p>Solution pH plays an important role in protein dynamics, stability, and folding; however, detailed mechanisms remain poorly understood. Here we use continuous constant pH molecular dynamics in explicit solvent with pH replica exchange to explore the pH-dependent stability and folding mechanism of a miniprotein BBL, which has drawn intense debate in the past. Consistent with the two-state model, simulations showed native and denatured states with pH-dependent populations. However, at pH 7, the folding barrier is marginal and it vanishes as pH is decreased to 5, in agreement with the downhill folding hypothesis. As pH continues to decrease, the unfolding barrier lowers and denaturation is triggered by the protonation of Asp162, consistent with experimental evidence. Interestingly, unfolding proceeded via a sparsely populated intermediate, with intact secondary structure and a compact, unlocked hydrophobic core shielded from solvent, lending support to the recent hypothesis of a universal dry molten globule in protein folding. Our work demonstrates that constant pH molecular dynamics is a unique tool for testing this and other hypotheses to advance the knowledge in protein dynamics, stability, and folding.</p>


2017 ◽  
Author(s):  
Jana Shen ◽  
Zhi Yue

<p>Solution pH plays an important role in protein dynamics, stability, and folding; however, detailed mechanisms remain poorly understood. Here we use continuous constant pH molecular dynamics in explicit solvent with pH replica exchange to explore the pH-dependent stability and folding mechanism of a miniprotein BBL, which has drawn intense debate in the past. Consistent with the two-state model, simulations showed native and denatured states with pH-dependent populations. However, at pH 7, the folding barrier is marginal and it vanishes as pH is decreased to 5, in agreement with the downhill folding hypothesis. As pH continues to decrease, the unfolding barrier lowers and denaturation is triggered by the protonation of Asp162, consistent with experimental evidence. Interestingly, unfolding proceeded via a sparsely populated intermediate, with intact secondary structure and a compact, unlocked hydrophobic core shielded from solvent, lending support to the recent hypothesis of a universal dry molten globule in protein folding. Our work demonstrates that constant pH molecular dynamics is a unique tool for testing this and other hypotheses to advance the knowledge in protein dynamics, stability, and folding.</p>


2017 ◽  
Vol 19 (42) ◽  
pp. 28527-28539 ◽  
Author(s):  
Xiakun Chu ◽  
Victor Muñoz

Transcription factors search for their target DNA siteviaa mix of conventional 3D diffusion and 1D diffusion along the DNA molecule. We find that the presence of conformational disorder on the protein domain that binds DNA enables a gliding mode that results in accelerated 1D diffusion.


2016 ◽  
Vol 473 (17) ◽  
pp. 2545-2559 ◽  
Author(s):  
Victor Muñoz ◽  
Michele Cerminara

Protein folding research stalled for decades because conventional experiments indicated that proteins fold slowly and in single strokes, whereas theory predicted a complex interplay between dynamics and energetics resulting in myriad microscopic pathways. Ultrafast kinetic methods turned the field upside down by providing the means to probe fundamental aspects of folding, test theoretical predictions and benchmark simulations. Accordingly, experimentalists could measure the timescales for all relevant folding motions, determine the folding speed limit and confirm that folding barriers are entropic bottlenecks. Moreover, a catalogue of proteins that fold extremely fast (microseconds) could be identified. Such fast-folding proteins cross shallow free energy barriers or fold downhill, and thus unfold with minimal co-operativity (gradually). A new generation of thermodynamic methods has exploited this property to map folding landscapes, interaction networks and mechanisms at nearly atomic resolution. In parallel, modern molecular dynamics simulations have finally reached the timescales required to watch fast-folding proteins fold and unfold in silico. All of these findings have buttressed the fundamentals of protein folding predicted by theory, and are now offering the first glimpses at the underlying mechanisms. Fast folding appears to also have functional implications as recent results connect downhill folding with intrinsically disordered proteins, their complex binding modes and ability to moonlight. These connections suggest that the coupling between downhill (un)folding and binding enables such protein domains to operate analogically as conformational rheostats.


2016 ◽  
Vol 113 (17) ◽  
pp. 4747-4752 ◽  
Author(s):  
Wookyung Yu ◽  
Michael C. Baxa ◽  
Isabelle Gagnon ◽  
Karl F. Freed ◽  
Tobin R. Sosnick

The relationship between folding cooperativity and downhill, or barrier-free, folding of proteins under highly stabilizing conditions remains an unresolved topic, especially for proteins such as λ-repressor that fold on the microsecond timescale. Under aqueous conditions where downhill folding is most likely to occur, we measure the stability of multiple H bonds, using hydrogen exchange (HX) in a λYA variant that is suggested to be an incipient downhill folder having an extrapolated folding rate constant of 2 × 105 s−1 and a stability of 7.4 kcal·mol−1 at 298 K. At least one H bond on each of the three largest helices (α1, α3, and α4) breaks during a common unfolding event that reflects global denaturation. The use of HX enables us to both examine folding under highly stabilizing, native-like conditions and probe the pretransition state region for stable species without the need to initiate the folding reaction. The equivalence of the stability determined at zero and high denaturant indicates that any residual denatured state structure minimally affects the stability even under native conditions. Using our ψ analysis method along with mutational ϕ analysis, we find that the three aforementioned helices are all present in the folding transition state. Hence, the free energy surface has a sufficiently high barrier separating the denatured and native states that folding appears cooperative even under extremely stable and fast folding conditions.


2015 ◽  
Vol 119 (47) ◽  
pp. 14925-14933 ◽  
Author(s):  
Athi N. Naganathan ◽  
David De Sancho
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document