Multi-Objective Trajectory Planning in Wire-Actuated Parallel Manipulators

Author(s):  
Maryam Agahi ◽  
Leila Notash
2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110027
Author(s):  
Jianqiang Wang ◽  
Yanmin Zhang ◽  
Xintong Liu

To realize efficient palletizing robot trajectory planning and ensure ultimate robot control system universality and extensibility, the B-spline trajectory planning algorithm is used to establish a palletizing robot control system and the system is tested and analyzed. Simultaneously, to improve trajectory planning speeds, R control trajectory planning is used. Through improved algorithm design, a trajectory interpolation algorithm is established. The robot control system is based on R-dominated multi-objective trajectory planning. System stack function testing and system accuracy testing are conducted in a production environment. During palletizing function testing, the system’s single-step code packet time is stable at approximately 5.8 s and the average evolutionary algebra for each layer ranges between 32.49 and 45.66, which can save trajectory planning time. During system accuracy testing, the palletizing robot system’s repeated positioning accuracy is tested. The repeated positioning accuracy error is currently 10−1 mm and is mainly caused by friction and the machining process. By studying the control system of a four-degrees-of-freedom (4-DOF) palletizing robot based on the trajectory planning algorithm, the design predictions and effects are realized, thus providing a reference for more efficient future palletizing robot design. Although the working process still has some shortcomings, the research has major practical significance.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 543
Author(s):  
Alejandra Ríos ◽  
Eusebio E. Hernández ◽  
S. Ivvan Valdez

This paper introduces a two-stage method based on bio-inspired algorithms for the design optimization of a class of general Stewart platforms. The first stage performs a mono-objective optimization in order to reach, with sufficient dexterity, a regular target workspace while minimizing the elements’ lengths. For this optimization problem, we compare three bio-inspired algorithms: the Genetic Algorithm (GA), the Particle Swarm Optimization (PSO), and the Boltzman Univariate Marginal Distribution Algorithm (BUMDA). The second stage looks for the most suitable gains of a Proportional Integral Derivative (PID) control via the minimization of two conflicting objectives: one based on energy consumption and the tracking error of a target trajectory. To this effect, we compare two multi-objective algorithms: the Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D) and Non-dominated Sorting Genetic Algorithm-III (NSGA-III). The main contributions lie in the optimization model, the proposal of a two-stage optimization method, and the findings of the performance of different bio-inspired algorithms for each stage. Furthermore, we show optimized designs delivered by the proposed method and provide directions for the best-performing algorithms through performance metrics and statistical hypothesis tests.


2005 ◽  
Vol 128 (1) ◽  
pp. 303-310 ◽  
Author(s):  
Saeed Behzadipour ◽  
Amir Khajepour

The stiffness of cable-based robots is studied in this paper. Since antagonistic forces are essential for the operation of cable-based manipulators, their effects on the stiffness should be considered in the design, control, and trajectory planning of these manipulators. This paper studies this issue and derives the conditions under which a cable-based manipulator may become unstable because of the antagonistic forces. For this purpose, a new approach is introduced to calculate the total stiffness matrix. This approach shows that, for a cable-based manipulator with all cables in tension, the root of instability is a rotational stiffness caused by the internal cable forces. A set of sufficient conditions are derived to ensure the manipulator is stabilizable meaning that it never becomes unstable upon increasing the antagonistic forces. Stabilizability of a planar cable-based manipulator is studied as an example to illustrate this approach.


10.5772/61235 ◽  
2015 ◽  
Vol 12 (9) ◽  
pp. 118
Author(s):  
Yong Liu ◽  
Qingxuan Jia ◽  
Gang Chen ◽  
Hanxu Sun ◽  
Junjie Peng

2016 ◽  
Vol 23 (12) ◽  
pp. 3248-3255 ◽  
Author(s):  
Jin Tao ◽  
Qing-lin Sun ◽  
Zeng-qiang Chen ◽  
Ying-ping He

Sign in / Sign up

Export Citation Format

Share Document