T2 and T2* Magnetic Resonance Imaging Sequences Predict Brain Injury After Intracerebral Hemorrhage in Rats

2013 ◽  
pp. 151-155 ◽  
Author(s):  
Hang Jin ◽  
Gang Wu ◽  
Shukun Hu ◽  
Ya Hua ◽  
Richard F. Keep ◽  
...  
Stroke ◽  
2021 ◽  
Author(s):  
Ming Wang ◽  
Fan Xia ◽  
Shu Wan ◽  
Ya Hua ◽  
Richard F. Keep ◽  
...  

Background and Purpose: Early erythrolysis occurs within the hematoma following intracerebral hemorrhage (ICH), and the release of erythrocyte cytoplasmic proteins such as hemoglobin and Prx2 (peroxiredoxin 2) can cause brain injury. Complement activation can induce erythrolysis. This study determined the function of complement component 3 (C3) in erythrolysis in hematoma and brain injury after ICH in mice. Methods: This study has 3 parts. First, ICH was induced in adult male C3-sufficient and deficient mice and animals were euthanized on days 1, 3, 7, and 28 for immunohistochemistry after magnetic resonance imaging and behavioral testing. Second, C3-sufficient and deficient mice with ICH were euthanized on day 1 for Western blot analysis. Third, C3-sufficient mice received injections of PBS and Prx2. Mice underwent both magnetic resonance imaging and behavioral tests on day 1 and were then euthanized. Brains were harvested for immunohistochemistry and Fluoro-Jade C staining. Results: Erythrolysis occurred in the hematoma in C3-sufficient and deficient mice on day 3 following ICH. C3-deficient mice had less erythrolysis, brain swelling, and neuronal degeneration in the acute phase and less brain atrophy in the chronic phase. There were fewer neurological deficits on days 3, 7, and 28 in C3-deficient mice. C3-deficient mice also had less extracellular Prx2 release. Moreover, Prx2 induced brain edema and brain injury and recruited macrophage scavenger receptor-1- and CD4-positive cells following ICH in mice. Conclusions: C3-deficient mice had less severe erythrolysis and brain injury following ICH compared with C3-sufficient mice. Prx2 released after erythrolysis can cause brain damage and neuroinflammation in mice.


2021 ◽  
Vol 11 (6) ◽  
pp. 775
Author(s):  
Sung-Suk Oh ◽  
Eun-Hee Lee ◽  
Jong-Hoon Kim ◽  
Young-Beom Seo ◽  
Yoo-Jin Choo ◽  
...  

(1) Background: Blood brain barrier (BBB) disruption following traumatic brain injury (TBI) results in a secondary injury by facilitating the entry of neurotoxins to the brain parenchyma without filtration. In the current paper, we aimed to review previous dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) studies to evaluate the occurrence of BBB disruption after TBI. (2) Methods: In electronic databases (PubMed, Scopus, Embase, and the Cochrane Library), we searched for the following keywords: dynamic contrast-enhanced OR DCE AND brain injury. We included studies in which BBB disruption was evaluated in patients with TBI using DCE-MRI. (3) Results: Four articles were included in this review. To assess BBB disruption, linear fit, Tofts, extended Tofts, or Patlak models were used. KTrans and ve were increased, and the values of vp were decreased in the cerebral cortex and predilection sites for diffusion axonal injury. These findings are indicative of BBB disruption following TBI. (4) Conclusions: Our analysis supports the possibility of utilizing DCE-MRI for the detection of BBB disruption following TBI.


Brain ◽  
2011 ◽  
Vol 134 (3) ◽  
pp. 769-782 ◽  
Author(s):  
Jonathan C. Bardin ◽  
Joseph J. Fins ◽  
Douglas I. Katz ◽  
Jennifer Hersh ◽  
Linda A. Heier ◽  
...  

Stroke ◽  
2021 ◽  
Author(s):  
Jean François Hak ◽  
Grégoire Boulouis ◽  
Basile Kerleroux ◽  
Sandro Benichi ◽  
Sarah Stricker ◽  
...  

Background and Purpose: Pediatric nontraumatic intracerebral hemorrhage accounts for half of stroke in children. Early diagnostic of the causative underlying lesion is the first step toward prevention of hemorrhagic recurrence. We aimed to investigate the performance of arterial spin labeling sequence (ASL) in the acute phase etiological workup for the detection of an arteriovenous shunt (AVS: including malformation and fistula), the most frequent cause of pediatric nontraumatic intracerebral hemorrhage. Methods: Children with a pediatric nontraumatic intracerebral hemorrhage between 2011 and 2019 enrolled in a prospective registry were retrospectively included if they had undergone ASL-magnetic resonance imaging before any etiological treatment. ASL sequences were reviewed using cerebral blood flow maps by 2 raters for the presence of an AVS. The diagnostic performance of ASL was compared with admission computed tomography angiography, other magnetic resonance imaging sequences including contrast-enhanced sequences and subsequent digital subtraction angiography. Results: A total of 121 patients with pediatric nontraumatic intracerebral hemorrhage were included (median age, 9.9 [interquartile range, 5.8–13]; male sex 48.8%) of whom 76 (63%) had a final diagnosis of AVS. Using digital subtraction angiography as an intermediate reference, visual ASL inspection had a sensitivity and a specificity of, respectively, 95.9% (95% CI, 88.5%–99.1%) and 79.0% (95% CI, 54.4%–94.0%). ASL had a sensitivity, specificity, and accuracy of 90.2%, 97.2%, and 92.5%, respectively for the detection of the presence of an AVS, with near perfect inter-rater agreement (κ=0.963 [95% CI, 0.912–1.0]). The performance of ASL alone was higher than that of other magnetic resonance imaging sequences, individually or combined, and higher than that of computed tomography angiography. Conclusions: ASL has strong diagnostic performance for the detection of AVS in the initial workup of intracerebral hemorrhage in children. If our findings are confirmed in other settings, ASL may be a helpful diagnostic imaging modality for patients with pediatric nontraumatic intracerebral hemorrhage. REGISTRATION: URL: https://www.clinicaltrials.gov ; Unique identifiers: 3618210420, 2217698.


Sign in / Sign up

Export Citation Format

Share Document