Vibration Control and Failure Diagnosis in Rotating Machinery by means of Active Magnetic Bearings

Author(s):  
R. Nordmann
2002 ◽  
Vol 124 (3) ◽  
pp. 566-570 ◽  
Author(s):  
R. L. Fittro ◽  
C. R. Knospe

Many important industrial problems in the control of rotating machinery with active magnetic bearings concern the minimization of the rotor vibration response to poorly characterized disturbances at a single or several shaft locations, these typically not corresponding to those of a sensor or actuator. Herein, we examine experimental results of a multivariable controller obtained via μ synthesis with a laboratory test rig. These indicate that a significant improvement in performance can be obtained with a multivariable μ controller over that achieved with an optimal decentralized PD controller.


Author(s):  
Roger L. Fittro ◽  
Carl R. Knospe

Many important industrial problems in the control of rotating machinery with active magnetic bearings concern the minimization of the rotor vibration response to poorly characterized disturbances at a single or several shaft locations, these typically not corresponding to those of a sensor or actuator. Herein, we examine experimental results of a multivariable controller obtained via μ synthesis with a laboratory test rig. These indicate that a significant improvement in performance can be obtained with a multivariable μ controller over that achieved with an optimal decentralized PD controller.


Author(s):  
Yichen Yao ◽  
Yixin Su ◽  
Tianye Yu ◽  
Gexue Ren ◽  
Suyuan Yu

Abstract In modern industries, high-speed machinery occupies a fundamental place. However, rotating machinery will inevitably produce a variety of structural noise and vibration. Generally, vibration isolation means can be divided into active vibration isolation and passive vibration isolation, among which the most representative are active magnetic bearings (AMBs) and vibration isolators, respectively. The combination of active magnetic bearings and vibration isolators is widely used in rotating machinery because of its excellent effect in vibration and noise reduction. This paper concentrates on the analysis of the vibration transmission mechanism of the active magnetic bearings coupled with the vibration isolators. A 30 kW prototype pump is taken as an example to help describe the research method. The model of the pump is first established. The stationary pump components and the rotor are respectively modeled through the finite element method and converted to substructure modal expression after low-order modal extraction. The bearing force is simplified to spring-dampers with equivalent stiffness and equivalent damping relating to the exciting frequency. The vibration isolators are simplified as three-dimensional spring-dampers. Based on the model, this paper then investigates the matching relation of the AMBs and the vibration isolators and proposes a dynamic vibration isolation design method for the rotor-AMBs-flexible support system. On the basis of the frequency-domain response of the original design, this design method gives the frequency-domain curves of the desired stiffness and damping of the suitable active vibration isolation, which can be used to guide the controller design of the AMBs and isolators selection. According to the design, we have done laboratory experiments on the prototype pump. The results show that the design method based on matching relation has good performance in vibration isolation.


Author(s):  
Bruno Wagner

This paper recalls the principles and main features of the active magnetic bearings and especially the advantages for turbomachines. Oil-free working and vibration control are part of them. Field experiences are described for different shaft line configurations. Step by step we are going to get totally rid of oil with the introduction of active magnetic bearings together with dry gas seals and gearless drive. Future machines will take the benefit of all this field experience. The trend of the design optimization is the active magnetic bearings in the process gas itself, for a length reduction of shafts. But at the present stage, the active magnetic bearing is a proven technology today.


1993 ◽  
Vol 5 (5) ◽  
pp. 438-442 ◽  
Author(s):  
Nobuyoshi Taguchi ◽  
◽  
Takakazu Ishimatsu ◽  
Takashi Shimomachi ◽  
◽  
...  

Active magnetic bearings have several advantages over conventional mechanical and fluid bearings. However, when the magnetic bearings are used at high rotational speeds, whirling motions and vibrations synchronized with the rotation of the rotor should be considered. In order to suppress these unfavorable vibrations of rotor which is supported by magnetic bearings, we have developed an active vibration control system with a two-level control structure. Experimental results show that our active bearings system effectively suppresses the whirling motion.


2015 ◽  
Vol 2015.21 (0) ◽  
pp. _20420-1_-_20420-2_
Author(s):  
Hirokazu Tomono ◽  
Tasuku Kamekawa ◽  
Hiroyuki Fujisaki ◽  
Masamitsu Shiga ◽  
Toru Watanabe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document