Volume 10A: Structures and Dynamics
Latest Publications


TOTAL DOCUMENTS

70
(FIVE YEARS 70)

H-INDEX

0
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791884218

Author(s):  
Nguyen LaTray ◽  
Daejong Kim ◽  
Myongsok Song

Abstract This work presents a novel design of a hydrostatic thrust foil bearing (HSTFB) with an outer diameter of 154mm along with simulation and test results up to specific load capacity of 223kPa (32.3psi). The HSTFB incorporates a high pressure air/gas injection to the thrust foil bearing with a uniform clearance. This bearing has high load capacity, low power loss, and no friction/wear during startup and shutdown. In addition, the HSTFB allows for bidirectional operation. The paper also presents an advanced simulation model which adopts the exact locations of a tangentially arranged bumps to a cylindrical two-dimensional plate model of the top foil. This method predicts top foil deflection with better accuracy than the traditional independent elastic foundation model which distributes the bump locations over the nodal points in the cylindrical coordinates, and with less computational resource than the finite element method applied to the entire bump/top foils. The presented HSTFB, was designed for Organic Rankine Cycle (ORC) generators, but its performance was predicted and measured using air in this paper. The bearing static performance is compared analytically against the rigid counterpart, and presented at different supply pressures, speeds, and minimum film thicknesses. Experimental verification is conducted at 10, 15 and 20krpm. The measured load capacity and frictional loss agree well with the prediction. The measured film thickness also agrees with the prediction after the structural deflection of the thrust runner disc is compensated. Overall, the novel HSTFB demonstrates an excellent static performance and shows good potential for adoption to the intended ORC generators and other large oil-free turbomachines.


Author(s):  
Lisa Hühn ◽  
Oliver Munz ◽  
Corina Schwitzke ◽  
Hans-Jörg Bauer

Abstract Labyrinth seals are used to prevent and control the mass flow rate between rotating components. Due to thermally and mechanically induced expansions during operation and transient flight maneuvers, a contact, the so-called rubbing process, between rotor and stator cannot be excluded. A large amount of rubbing process data concerning numerical and experimental investigations is available in public literature as well as at the Institute of Thermal Turbomachinery (ITS). The investigations were carried out for different operating conditions, material combinations, and component geometries. In combination with the experiments presented in this paper, the effects of the different variables on load due to rubbing are compared, and discussed with the focus lying on the material combination. The influence of the material on the loads can be identified as detailed as never before. For example, the contact forces in the current experiments are higher due to a higher temperature resistance of Young’s modulus. The analysis will also be based on the rubbing of turbine blades. Design guidelines are derived for labyrinth seals with improved properties regarding tolerance of rub events. Based on the knowledge obtained, guidelines for designing reliable labyrinth seals for future engines are discussed.


Author(s):  
Ghasem Ghannad Tehrani ◽  
Chiara Gastaldi ◽  
Teresa Maria Berruti

Abstract Rolling bearings are still widely used in aeroengines. Whenever rotors are modeled, rolling bearing components are typically modeled using springs. In simpler models, this spring is considered to have a constant mean value. However, the rolling bearing stiffness changes with time due to the positions of the balls with respect to the load on the bearing, thus giving rise to an internal excitation known as Parametric Excitation. Due to this parametric excitation, the rotor-bearings system may become unstable for specific combinations of boundary conditions (e.g. rotational speed) and system characteristics (rotor flexibility etc.). Being able to identify these instability regions at a glance is an important tool for the designer, as it allows to discard since the early design stages those configurations which may lead to catastrophic failures. In this paper, a Jeffcott rotor supported and excited by such rolling bearings is used as a demonstrator. In the first step, the expression for the time–varying stiffness of the bearings is analytically derived by applying the Hertzian Contact Theory. Then, the equations of motion of the complete system are provided. In this study, the Harmonic Balance Method (HBM) is used to as an approximate procedure to draw a stability map, thus dividing the input parameter space, i.e. rotational speed and rotor physical characteristics, into stable and unstable regions.


Author(s):  
Carlos Martel ◽  
Salvador Rodríguez

Abstract The blade vibration level of an aerodynamically unstable rotor is a quantity of crucial importance to correctly estimate the blade fatigue life. This amplitude is the result of the balance between the energy pumped into the blades by the gas flow, and the nonlinear dissipation at the blade-disk contact interfaces. In a tuned configuration, the blade displacements can be described as a travelling wave consisting of one fundamental nodal diameter and frequency and its higher harmonics, and the problem can be reduced to the computation of a time periodic solution in just one sector. This simplification is no longer valid for a mistuned bladed disk. The resulting nonlinear vibration of the mistuned system is a combination of several travelling waves with different number of nodal diameters, coupled through mistuning. In this case, the complete bladed disk has to be considered, which requires an extremely high computational cost, and, for this reason, reduced order models (ROM) are required to analyze this situation. In this work, we use a 3 DOF/sector mass-spring system to describe the nonlinear friction saturation of the flutter vibration amplitude of a realistic mistuned bladed disk. The convergence of the solution of the mass-spring system is still quite slow because of the presence of many unstable modes with very similar growth rates. In order to speed-up the simulations a simpler asymptotic ROM is derived from the mass-spring model, which allows for much faster integration times. The simulations of the asymptotic ROM are compared with the measurements obtained in the European project FUTURE, where an aerodynamically unstable LPT rotor was tested with different intentional mistuning patterns.


Author(s):  
L. Simonassi ◽  
M. Zenz ◽  
P. Bruckner ◽  
S. Pramstrahler ◽  
F. Heitmeir ◽  
...  

Abstract The design of modern aero engines enhances the interaction between components and facilitates the propagation of circumferential distortions of total pressure and temperature. As a consequence, the inlet conditions of a real turbine have significant spatial non-uniformities, which have direct consequences on both its aerodynamic and vibration characteristics. This work presents the results of an experimental study on the effects of different inlet total pressure distortion-stator clocking positions on the propagation of total pressure inflow disturbances through a low pressure turbine stage, with a particular focus on both the aerodynamic and aeroelastic performance. Measurements at a stable engine relevant operating condition and during transient operation were carried out in a one and a half stage subsonic turbine test facility at the Institute of Thermal Turbomachinery and Machine Dynamics at Graz University of Technology. A localised total pressure distortion was generated upstream of the stage in three different azimuthal positions relative to the stator vanes. The locations were chosen in order to align the distortion directly with a vane leading edge, suction side and pressure side. Additionally, a setup with clean inflow was used as reference. Steady and unsteady aerodynamic measurements were taken downstream of the investigated stage by means of a five-hole-probe (5HP) and a fast response aerodynamic pressure probe (FRAPP) respectively. Strain gauges applied on different blades were used in combination with a telemetry system to acquire the rotor vibration data. The aerodynamic interactions between the stator and rotor rows and the circumferential perturbation were studied through the identification of the main structures constituting the flow field. This showed that the steady and unsteady alterations created by the distortion in the flow field lead to modifications of the rotor vibration characteristics. Moreover, the importance of the impact that the pressure distortion azimuthal position has on the LPT stage aerodynamics and vibrations was highlighted.


Author(s):  
Seif ElMasry ◽  
Arnold Kühhorn ◽  
Felix Figaschewsky

Abstract This paper aims to study the effect of varying the working line of a compressor onto the forced response vibrations of the blades of an integrally bladed disk (blisk). The investigated rotor belongs to a transonic research compressor, where various probes are placed to measure flow data at all stations and analyze blade vibrations. A single-passage CFD model of all compressor blade-rows is used for steady computations. Using a finite element model, the natural frequencies and mode shapes of the blisk across the operational range of the compressor are predicted. Thus, resonance conditions can be identified from the Campbell diagram. The variation of the compressor working line is investigated at 90% of the maximum shaft speed, where the resonance condition of the 11th blade mode family and the engine order corresponding to the aerodynamic distortion from the upstream stator vane is predicted. Using a single-passage model, time-accurate simulations of the investigated rotor are executed at various operating points, which cover the operational range of the compressor between choke and stall conditions. Aerodynamic damping ratios are calculated using the aerodynamic influence coefficients method at each point, in order to predict the resulting vibration amplitudes of the blades. Relatively high amplitudes of the modal aerodynamic forces are observed at the low working line. A detailed post-processing analysis is performed, as the change of flow incidence contributes largely in the increase of modal aerodynamic forces on the blade. The aerodynamic damping ratios increase with higher working lines, where the rotor achieves relatively higher pressure ratios. However, the damping decreases rapidly close to stall conditions. The trend of the predicted vibration amplitudes is compared to strain gauge measurements from the rig, which are registered during multiple acceleration maneuvers performed over different working lines. A strong correlation between the predicted and measured trends of the forced response vibration is witnessed.


Author(s):  
Anne-Lise Fiquet ◽  
Agathe Vercoutter ◽  
Nicolas Buffaz ◽  
Stéphane Aubert ◽  
Christoph Brandstetter

Abstract Significant non-synchronous blade vibrations (NSV) have been observed in an experimental three-stage high-speed compressor at part-speed conditions. High amplitude acoustic modes, propagating around the circumference and originating in the highly loaded Stage-3 have been observed in coherence with the structural vibration mode. In order to understand the occurring phenomena, a detailed numerical study has been carried out to reproduce the mechanism. Unsteady full annulus RANS simulations of the whole setup have been performed using the solver elsA. The results revealed the development of propagating acoustic modes which are partially trapped in the annulus and are in resonance with an aerodynamic disturbance in Rotor-3. The aerodynamic disturbance is identified as an unsteady separation of the blade boundary layer in Rotor-3. The results indicate that the frequency and phase of the separation adapt to match those of the acoustic wave, and are therefore governed by acoustic propagation conditions. Furthermore, the simulations clearly show the modulation of the propagating wave with the rotor blades, leading to a change of circumferential wave numbers while passing the blade row. To analyze if the effect is self-induced by the blade vibration, a noncoherent structural mode has been imposed in the simulations. Even at high vibration amplitude the formerly observed acoustic mode did not change its circumferential wave number. This phenomenon is highly relevant to modern compressor designs, since the appearance of the axially propagating acoustic waves can excite blade vibrations if they coincide with a structural eigenmode, as observed in the presented experiments.


Author(s):  
Aoshuang Ding ◽  
Xuesong Li

Abstract This paper analyses the flow characteristics and oil-air distributions of oil flows in a tilting-pad journal bearing under different bearing loads. This titling-pad journal bearing is working at 3000 rpm rotation speed and its minimum film thicknesses have been measured under different loads from 180 kN to 299 kN. Based on the previous researches of this bearing under 180 kN, the gaseous cavitation and low-turbulence flow exists in this bearing flow. A suitable gaseous cavitation model and the SST model with low-Re correction are used in the film flow simulations. With the rotor and pads assumed to be rigid, the dynamic mesh and motion equations are applied to simulate the motions of the rotor and the rotations of the pads. Based on the simulation results under different bearing loads, the simulated minimum film thicknesses agrees well with the measured data. It indicates that the simulation results can catch the film geometries and flows correctly. With the load increasing, the rotor moves closer to the loaded pads and the minimum film thickness decreases. Taking the effect of boundary layers into consideration, the turbulence has a negative relationship with the film thickness and decreases in the loaded area under higher bearing load. It can be verified by the simulated lower turbulent viscosity ratio distributions in the loaded pads. In the unloaded area, both the film thickness and turbulence viscosity ratio are positively related to the bearing loads. Thus, the higher bearing load may lead the flow to be more different in the loaded and unloaded area, and the turbulence in the loaded pads may transfer to laminar in the end. As for the oil-air distributions, in the unloaded pads, with the bearing load increasing, the simulated air volume fraction increases in the unloaded pads with lower pressure. It should be caused by the higher film thickness of the unloaded pads under higher loads. In sum, the flow turbulence and cavitation process changes with the bearing load. With a higher load, the cavitation becomes more in the unloaded pads and the flow changes sharper from the high-turbulence unloaded area to the low-turbulence loaded area. As the simulation results is in good accordance with the experimental data, the SST model with low-Re correction and the gaseous cavitation model are verified to be suitable for bearing film simulations under different loads.


Author(s):  
ZeDa Dong ◽  
Cheng Cheng ◽  
Fangcheng Xu

Abstract In this paper, the mathematical model of herringbone grooved aerodynamic foil bearings is established, and the finite difference method is used to obtain the discretized form of Reynolds equation. The static characteristics of bearings, such as film pressure, film temperature, are obtained by solving the Reynolds equation and energy equation. The bearing load capacity and friction power consumption are obtained by calculating the film thickness and film pressure distribution in the bearing gap. The influence of the bearing operational parameters, such as eccentricity and rotation speed, and the bearing structural parameters, such as groove width, groove depth ratio, groove number and helix angle, on the bearing load capacity and friction power consumption of bearings are analyzed. The methods of improving bearing load capacity and reducing friction power consumption are obtained. Simultaneously, by comparing the bearing load capacity and friction power consumption of herringbone grooved gas foil bearings and gas foil bearings (GFBs) without herringbone grooves, the influence of herringbone grooves on the bearing performance is obtained.


Author(s):  
Min Zhang ◽  
Dara W. Childs

Abstract With the increasing demand of the oil & gas industry, many pump companies are developing multiphase pumps, which can handle liquid-gas flow directly without separating the liquid from a mixed flow. The see-through labyrinth seal is one of the popular types of non-contact annular seals that act as a balancing piston seal to reduce the axial thrust of a high-performance centrifugal pump. The see-through labyrinth seal also generates reaction forces that can significantly impact the rotordynamic performance of the pump. Multiphase pumps are expected to operate from pure-liquid to pure-gas conditions. Zhang et al. (2019) conducted a comprehensive experimental study on the performance (leakage and rotordynamic coefficients) of a see-through labyrinth seal under mainly-gas conditions. This paper continues Zhang et al.’s (2019) research and studies the performance of the see-through TOS (tooth-on-stator) labyrinth seal under mainly-liquid conditions. The test seal’s inner diameter, length, and radial clearance are 89.256 mm, 66.68 mm, and 0.178 mm, respectively. The test fluid is a mixture of air and silicone oil (PSF-5cSt), and the inlet GVF (gas volume fraction) varies from zero to 12%. Tests are conducted at an exit pressure of 6.9 bars, an inlet temperature of 39.1 °C, three pressure drops PDs (27.6 bars, 34.5 bars, and 48.3 bars), and three rotating speeds ω (5 krpm, 10 krpm, and 15 krpm). The seal is always concentric with the rotor, and there is no intentional fluid pre-rotation at the seal inlet. The air presence in the oil flow significantly impacts the leakage as well as the dynamic forces of the test seal. The first air increment (increasing inlet GVF from 0% to 3%) slightly increases the leakage mass flow rate, while further air increments steadily decrease the leakage mass flow rate. For all test conditions, the leakage mass flow rate does not change as ω increases from 5 krpm to 10 krpm but decreases as ω is further increased to 15 krpm. The reduction in the leakage mass flow rate indicates that there is an increase in the friction factor, and there could be a highly possible flow regime change as ω increases from 10 krpm to 15 krpm. For ω ≤ 10 krpm, effective stiffness Keff increases as inlet GVF increases. Keff represents the test seal’s total centering force on the pump rotor. The increase of Keff increases the seal’s centering force and would increase the pump rotor’s critical speeds. Ceff indicates the test seal’s total damping force on the pump rotor. For ω ≤ 10 krpm, Ceff first decreases as inlet GVF increases from zero to 3%, and then remains unchanged as inlet GVF is further increased to 12%. For ω = 15 krpm, Keff first increases as inlet GVF increases from zero to 3% and then decreases as inlet GVF is further increased. As inlet GVF increases, Ceff steadily decreases for ω = 15 krpm.


Sign in / Sign up

Export Citation Format

Share Document