Domination Structures and Nondominated Solutions

1975 ◽  
pp. 227-280 ◽  
Author(s):  
P. L. Yu
Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 853
Author(s):  
Jesús Sánchez-Oro ◽  
Ana D. López-Sánchez ◽  
Anna Martínez-Gavara ◽  
Alfredo G. Hernández-Díaz ◽  
Abraham Duarte

This paper presents a hybridization of Strategic Oscillation with Path Relinking to provide a set of high-quality nondominated solutions for the Multiobjective k-Balanced Center Location problem. The considered location problem seeks to locate k out of m facilities in order to serve n demand points, minimizing the maximum distance between any demand point and its closest facility while balancing the workload among the facilities. An extensive computational experimentation is carried out to compare the performance of our proposal, including the best method found in the state-of-the-art as well as traditional multiobjective evolutionary algorithms.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Ya Ge ◽  
Feng Shan ◽  
Zhichun Liu ◽  
Wei Liu

This paper proposes a general method combining evolutionary algorithm and decision-making technique to optimize the structure of a minichannel heat sink (MCHS). Two conflicting objectives, the thermal resistance θ and the pumping power P, are simultaneously considered to assess the performance of the MCHS. In order to achieve the ultimate optimal design, multi-objective genetic algorithm is employed to obtain the nondominated solutions (Pareto solutions), while technique for order preference by similarity to an ideal solution (TOPSIS) is employed to determine which is the best compromise solution. Meanwhile, both the material cost and volumetric flow rate are fixed where this nonlinear problem is solved by applying the penalty function. The results show that θ of Pareto solutions varies from 0.03707 K W−1 to 0.10742 K W−1, while P varies from 0.00307 W to 0.05388 W, respectively. After the TOPSIS selection, it is found that P is significantly reduced without increasing too much θ. As a result, θ and P of the optimal MCHS determined by TOPSIS are 35.82% and 52.55% lower than initial one, respectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hai Zhu ◽  
Xingsi Xue ◽  
Chengcai Jiang ◽  
He Ren

Due to the problem of data heterogeneity in the semantic sensor networks, the communications among different sensor network applications are seriously hampered. Although sensor ontology is regarded as the state-of-the-art knowledge model for exchanging sensor information, there also exists the heterogeneity problem between different sensor ontologies. Ontology matching is an effective method to deal with the sensor ontology heterogeneity problem, whose kernel technique is the similarity measure. How to integrate different similarity measures to determine the alignment of high quality for the users with different preferences is a challenging problem. To face this challenge, in our work, a Multiobjective Evolutionary Algorithm (MOEA) is used in determining different nondominated solutions. In particular, the evaluating metric on sensor ontology alignment’s quality is proposed, which takes into consideration user’s preferences and do not need to use the Reference Alignment (RA) beforehand; an optimization model is constructed to define the sensor ontology matching problem formally, and a selection operator is presented, which can make MOEA uniformly improve the solution’s objectives. In the experiment, the benchmark from the Ontology Alignment Evaluation Initiative (OAEI) and the real ontologies of the sensor domain is used to test the performance of our approach, and the experimental results show the validity of our approach.


Author(s):  
Wen Fung Leong ◽  
Gary G. Yen

In this article, the authors propose a particle swarm optimization (PSO) for constrained optimization. The proposed PSO adopts a multiobjective approach to constraint handling. Procedures to update the feasible and infeasible personal best are designed to encourage finding feasible regions and convergence toward the Pareto front. In addition, the infeasible nondominated solutions are stored in the global best archive to exploit the hidden information for guiding the particles toward feasible regions. Furthermore, the number of feasible personal best in the personal best memory and the scalar constraint violations of personal best and global best are used to adapt the acceleration constants in the PSO flight equations. The purpose is to find more feasible particles and search for better solutions during the process. The mutation procedure is applied to encourage global and fine-tune local searches. The simulation results indicate that the proposed constrained PSO is highly competitive, achieving promising performance.


Author(s):  
M.A. Abido

Multiobjective particle swarm optimization (MOPSO) technique for environmental/economic dispatch (EED) problem is proposed and presented in this work. The proposed MOPSO technique evolves a multiobjective version of PSO by proposing redefinition of global best and local best individuals in multiobjective optimization domain. The proposed MOPSO technique has been implemented to solve the EED problem with competing and non-commensurable cost and emission objectives. Several optimization runs of the proposed approach have been carried out on a standard test system. The results demonstrate the capabilities of the proposed MOPSO technique to generate a set of well-distributed Pareto-optimal solutions in one single run. The comparison with the different reported techniques demonstrates the superiority of the proposed MOPSO in terms of the diversity of the Pareto optimal solutions obtained. In addition, a quality measure to Pareto optimal solutions has been implemented where the results confirm the potential of the proposed MOPSO technique to solve the multiobjective EED problem and produce high quality nondominated solutions.


2010 ◽  
Vol 1 (1) ◽  
pp. 42-63 ◽  
Author(s):  
Wen Fung Leong ◽  
Gary G. Yen

In this article, the authors propose a particle swarm optimization (PSO) for constrained optimization. The proposed PSO adopts a multiobjective approach to constraint handling. Procedures to update the feasible and infeasible personal best are designed to encourage finding feasible regions and convergence toward the Pareto front. In addition, the infeasible nondominated solutions are stored in the global best archive to exploit the hidden information for guiding the particles toward feasible regions. Furthermore, the number of feasible personal best in the personal best memory and the scalar constraint violations of personal best and global best are used to adapt the acceleration constants in the PSO flight equations. The purpose is to find more feasible particles and search for better solutions during the process. The mutation procedure is applied to encourage global and fine-tune local searches. The simulation results indicate that the proposed constrained PSO is highly competitive, achieving promising performance.


Sign in / Sign up

Export Citation Format

Share Document