Continuous deformation energy for Dynamic Material Splines subject to finite displacements

Author(s):  
O. Nocent ◽  
Y. Remion
2016 ◽  
Vol 1 (6) ◽  
Author(s):  
H. K. Moffatt ◽  
Raymond E. Goldstein ◽  
Adriana I. Pesci

Chromosoma ◽  
2021 ◽  
Vol 130 (1) ◽  
pp. 27-40
Author(s):  
Guoqing Liu ◽  
Hongyu Zhao ◽  
Hu Meng ◽  
Yongqiang Xing ◽  
Lu Cai

AbstractWe present a deformation energy model for predicting nucleosome positioning, in which a position-dependent structural parameter set derived from crystal structures of nucleosomes was used to calculate the DNA deformation energy. The model is successful in predicting nucleosome occupancy genome-wide in budding yeast, nucleosome free energy, and rotational positioning of nucleosomes. Our model also indicates that the genomic regions underlying the MNase-sensitive nucleosomes in budding yeast have high deformation energy and, consequently, low nucleosome-forming ability, while the MNase-sensitive non-histone particles are characterized by much lower DNA deformation energy and high nucleosome preference. In addition, we also revealed that remodelers, SNF2 and RSC8, are likely to act in chromatin remodeling by binding to broad nucleosome-depleted regions that are intrinsically favorable for nucleosome positioning. Our data support the important role of position-dependent physical properties of DNA in nucleosome positioning.


China Foundry ◽  
2021 ◽  
Vol 18 (1) ◽  
pp. 60-67
Author(s):  
Sheng-feng Shan ◽  
Hao Wang ◽  
Bing Zhang ◽  
Yuan-zhi Jia ◽  
Ming-zhen Ma

2019 ◽  
Vol 25 (3) ◽  
pp. 739-767 ◽  
Author(s):  
Emilio Barchiesi ◽  
Simon R Eugster ◽  
Francesco dell’Isola ◽  
François Hild

Bi-pantographic fabrics are composed of two families of pantographic beams and correspond to a class of architectured materials that are described in plane as second-gradient 2D continua. On a discrete level, a pantographic beam is a periodic arrangement of cells and looks like an expanding barrier. The materialization of a bi-pantographic fabric made from polyamide was achieved by additive manufacturing techniques. Starting from a discrete spring system, the deformation energy of the corresponding continuum is derived for large strains by asymptotic homogenization. The obtained energy depends on the second gradient of the deformation through the rate of change in orientation and stretch of material lines directed along the pantographic beams. Displacement-controlled bias extension tests were performed on rectangular prototypes for total elastic extension up to 25%. Force–displacement measurements complemented by local digital image correlation analyses were used to fit the continuum model achieving excellent agreement.


2011 ◽  
Vol 63-64 ◽  
pp. 655-658
Author(s):  
Qi Hao ◽  
Sheng Jun Wu

Explicit finite element method is adopted to simulate the crashworthiness performance of four types of typical thin—walled structures used in vehicle by software LS-DYNA. The structures with the same material、area and length are crash by a rigid body with 40km/h in10ms, The crash processes and crashworthiness characters are analyzed by a series crash parameters: deformation energy with unit displacement, impact force and deceleration to look for the optimal shape with crashworthiness. With comparing, the double caps section has ascendant performance than the others. The simulating methods of welded-joints are discussed to analysis their effects on crashworthiness simulation.


1973 ◽  
Vol 203 (3) ◽  
pp. 433-472 ◽  
Author(s):  
H. Flocard ◽  
P. Quentin ◽  
A.K. Kerman ◽  
D. Vautherin

Sign in / Sign up

Export Citation Format

Share Document